{"title":"结构矩阵代数的约旦嵌入和线性秩保护器","authors":"Ilja Gogić, Mateo Tomašević","doi":"10.1016/j.laa.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>We consider subalgebras <span><math><mi>A</mi></math></span> of the algebra <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices that contain all diagonal matrices, known in the literature as the structural matrix algebras (SMAs).</div><div>Let <span><math><mi>A</mi><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be an arbitrary SMA. We first show that any commuting family of diagonalizable matrices in <span><math><mi>A</mi></math></span> can be intrinsically simultaneously diagonalized (i.e. the corresponding similarity can be chosen from <span><math><mi>A</mi></math></span>). Using this, we then characterize when one SMA Jordan-embeds into another and in that case we describe the form of such Jordan embeddings. As a consequence, we obtain a description of Jordan automorphisms of SMAs, generalizing Coelho's result on their algebra automorphisms. Next, motivated by the results of Marcus-Moyls and Molnar-Šemrl, connecting the linear rank-one preservers with Jordan embeddings <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the algebra of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> upper-triangular matrices) respectively, we show that any linear unital rank-one preserver <span><math><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is necessarily a Jordan embedding. As the converse fails in general, we also provide a necessary and sufficient condition for when it does hold true. Finally, we obtain a complete description of linear rank preservers <span><math><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, as maps of the form <span><math><mi>X</mi><mo>↦</mo><mi>S</mi><mrow><mo>(</mo><mi>P</mi><mi>X</mi><mo>+</mo><mo>(</mo><mi>I</mi><mo>−</mo><mi>P</mi><mo>)</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>)</mo></mrow><mi>T</mi></math></span>, for some invertible matrices <span><math><mi>S</mi><mo>,</mo><mi>T</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and a central idempotent <span><math><mi>P</mi><mo>∈</mo><mi>A</mi></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"707 ","pages":"Pages 1-48"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jordan embeddings and linear rank preservers of structural matrix algebras\",\"authors\":\"Ilja Gogić, Mateo Tomašević\",\"doi\":\"10.1016/j.laa.2024.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider subalgebras <span><math><mi>A</mi></math></span> of the algebra <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices that contain all diagonal matrices, known in the literature as the structural matrix algebras (SMAs).</div><div>Let <span><math><mi>A</mi><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be an arbitrary SMA. We first show that any commuting family of diagonalizable matrices in <span><math><mi>A</mi></math></span> can be intrinsically simultaneously diagonalized (i.e. the corresponding similarity can be chosen from <span><math><mi>A</mi></math></span>). Using this, we then characterize when one SMA Jordan-embeds into another and in that case we describe the form of such Jordan embeddings. As a consequence, we obtain a description of Jordan automorphisms of SMAs, generalizing Coelho's result on their algebra automorphisms. Next, motivated by the results of Marcus-Moyls and Molnar-Šemrl, connecting the linear rank-one preservers with Jordan embeddings <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the algebra of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> upper-triangular matrices) respectively, we show that any linear unital rank-one preserver <span><math><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is necessarily a Jordan embedding. As the converse fails in general, we also provide a necessary and sufficient condition for when it does hold true. Finally, we obtain a complete description of linear rank preservers <span><math><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, as maps of the form <span><math><mi>X</mi><mo>↦</mo><mi>S</mi><mrow><mo>(</mo><mi>P</mi><mi>X</mi><mo>+</mo><mo>(</mo><mi>I</mi><mo>−</mo><mi>P</mi><mo>)</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>)</mo></mrow><mi>T</mi></math></span>, for some invertible matrices <span><math><mi>S</mi><mo>,</mo><mi>T</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and a central idempotent <span><math><mi>P</mi><mo>∈</mo><mi>A</mi></math></span>.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"707 \",\"pages\":\"Pages 1-48\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524004312\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004312","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的是包含所有对角矩阵的 n×n 复矩阵代数 Mn 的子代数 A,文献称之为结构矩阵代数(SMA)。我们首先证明,A 中任何可对角化矩阵的换向族都可以内在地同时对角化(即可以从 A 中选择相应的相似性)。利用这一点,我们可以描述一个 SMA 乔丹嵌入到另一个 SMA 中的情况,并在这种情况下描述这种乔丹嵌入的形式。因此,我们得到了对 SMA 的乔丹自动形的描述,推广了科埃略关于其代数自动形的结果。接下来,受马库斯-莫伊尔斯和莫尔纳-舍姆尔的结果的启发,我们分别将线性秩一预言器与乔丹嵌入 Mn→Mn 和 Tn→Mn (其中 Tn 是 n×n 上三角矩阵代数)联系起来,证明任何线性单元秩一预言器 A→Mn 必然是一个乔丹嵌入。由于反向一般不成立,我们还提供了一个必要条件和充分条件来说明何时反向成立。最后,对于一些可逆矩阵 S,T∈Mn 和一个中心幂等 P∈A,我们得到了线性秩预言器 A→Mn 的完整描述,即形式为 X↦S(PX+(I-P)Xt)T 的映射。
Jordan embeddings and linear rank preservers of structural matrix algebras
We consider subalgebras of the algebra of complex matrices that contain all diagonal matrices, known in the literature as the structural matrix algebras (SMAs).
Let be an arbitrary SMA. We first show that any commuting family of diagonalizable matrices in can be intrinsically simultaneously diagonalized (i.e. the corresponding similarity can be chosen from ). Using this, we then characterize when one SMA Jordan-embeds into another and in that case we describe the form of such Jordan embeddings. As a consequence, we obtain a description of Jordan automorphisms of SMAs, generalizing Coelho's result on their algebra automorphisms. Next, motivated by the results of Marcus-Moyls and Molnar-Šemrl, connecting the linear rank-one preservers with Jordan embeddings and (where is the algebra of upper-triangular matrices) respectively, we show that any linear unital rank-one preserver is necessarily a Jordan embedding. As the converse fails in general, we also provide a necessary and sufficient condition for when it does hold true. Finally, we obtain a complete description of linear rank preservers , as maps of the form , for some invertible matrices and a central idempotent .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.