由图形短时傅立叶变换生成的紧帧

IF 1 3区 数学 Q1 MATHEMATICS
Martin Buck, Kasso A. Okoudjou
{"title":"由图形短时傅立叶变换生成的紧帧","authors":"Martin Buck,&nbsp;Kasso A. Okoudjou","doi":"10.1016/j.laa.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>A <em>graph short-time Fourier transform</em> is defined using the eigenvectors of the graph Laplacian and a graph heat kernel as a window parametrized by a nonnegative time parameter <em>t</em>. We show that the corresponding Gabor-like system forms a frame for <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and gives a description of the spectrum of the corresponding frame operator in terms of the graph heat kernel and the spectrum of the underlying graph Laplacian. For two classes of algebraic graphs, we prove the frame is tight and independent of the window parameter <em>t</em>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"707 ","pages":"Pages 107-125"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight frames generated by a graph short-time Fourier transform\",\"authors\":\"Martin Buck,&nbsp;Kasso A. Okoudjou\",\"doi\":\"10.1016/j.laa.2024.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A <em>graph short-time Fourier transform</em> is defined using the eigenvectors of the graph Laplacian and a graph heat kernel as a window parametrized by a nonnegative time parameter <em>t</em>. We show that the corresponding Gabor-like system forms a frame for <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and gives a description of the spectrum of the corresponding frame operator in terms of the graph heat kernel and the spectrum of the underlying graph Laplacian. For two classes of algebraic graphs, we prove the frame is tight and independent of the window parameter <em>t</em>.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"707 \",\"pages\":\"Pages 107-125\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002437952400435X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952400435X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用图拉普拉卡的特征向量和图热核定义了图短时傅立叶变换,并将其作为由非负时间参数 t 参数化的窗口。我们证明了相应的类 Gabor 系统形成了 Cd 的框架,并用图热核和底层图拉普拉卡的频谱描述了相应框架算子的频谱。对于两类代数图,我们证明了框架是紧密的,且与窗口参数 t 无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight frames generated by a graph short-time Fourier transform
A graph short-time Fourier transform is defined using the eigenvectors of the graph Laplacian and a graph heat kernel as a window parametrized by a nonnegative time parameter t. We show that the corresponding Gabor-like system forms a frame for Cd and gives a description of the spectrum of the corresponding frame operator in terms of the graph heat kernel and the spectrum of the underlying graph Laplacian. For two classes of algebraic graphs, we prove the frame is tight and independent of the window parameter t.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信