Yili Wang , Kejun Xia , Guofu Niu , Michael Hamilton , Xu Cheng
{"title":"低至低温的 LDMOS 特性及 PSPHV 建模","authors":"Yili Wang , Kejun Xia , Guofu Niu , Michael Hamilton , Xu Cheng","doi":"10.1016/j.sse.2024.109029","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a detailed characterization and analysis of a 45 V LDMOS device from production technology across a wide temperature range from 33 to 385 K. For the first time, quasi-saturation behavior is consistently observed throughout the entire temperature range studied. Compared to prior published data, this device shows some notable differences, including a substantially higher saturation temperature of around 200 K for threshold voltage and subthreshold swing due to band tail and a typical low on-resistance down to 33 K, free of freezeout. To account for the observed temperature dependencies, we propose improved semi-empirical temperature scaling equations for the PSPHV model. We extend its applicable temperature range down to 33 K from the previous lower limit of 240 K. The enhancement models the temperature behaviors of key device parameters, including threshold voltage, subthreshold swing, mobility, velocity saturation, drift resistance, and quasi-saturation effects. These results provide new insights into the low-temperature behavior of LDMOS devices for cryogenic electronics applications.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109029"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of LDMOS down to cryogenic temperatures and modeling with PSPHV\",\"authors\":\"Yili Wang , Kejun Xia , Guofu Niu , Michael Hamilton , Xu Cheng\",\"doi\":\"10.1016/j.sse.2024.109029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article presents a detailed characterization and analysis of a 45 V LDMOS device from production technology across a wide temperature range from 33 to 385 K. For the first time, quasi-saturation behavior is consistently observed throughout the entire temperature range studied. Compared to prior published data, this device shows some notable differences, including a substantially higher saturation temperature of around 200 K for threshold voltage and subthreshold swing due to band tail and a typical low on-resistance down to 33 K, free of freezeout. To account for the observed temperature dependencies, we propose improved semi-empirical temperature scaling equations for the PSPHV model. We extend its applicable temperature range down to 33 K from the previous lower limit of 240 K. The enhancement models the temperature behaviors of key device parameters, including threshold voltage, subthreshold swing, mobility, velocity saturation, drift resistance, and quasi-saturation effects. These results provide new insights into the low-temperature behavior of LDMOS devices for cryogenic electronics applications.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"223 \",\"pages\":\"Article 109029\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110124001783\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001783","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文详细描述和分析了采用生产技术的 45 V LDMOS 器件在 33 至 385 K 宽温度范围内的特性。与之前公布的数据相比,该器件显示出一些显著差异,包括由于带尾效应,阈值电压和阈下摆动的饱和温度大大高于 200 K 左右,以及典型的低导通电阻(低至 33 K),无冻结现象。为了解释观察到的温度依赖性,我们为 PSPHV 模型提出了改进的半经验温度比例方程。我们将其适用的温度范围从以前的下限 240 K 扩展到 33 K。改进后的模型可模拟关键器件参数的温度行为,包括阈值电压、亚阈值摆幅、迁移率、速度饱和、漂移电阻和准饱和效应。这些结果为低温电子应用中 LDMOS 器件的低温行为提供了新的见解。
Characterization of LDMOS down to cryogenic temperatures and modeling with PSPHV
This article presents a detailed characterization and analysis of a 45 V LDMOS device from production technology across a wide temperature range from 33 to 385 K. For the first time, quasi-saturation behavior is consistently observed throughout the entire temperature range studied. Compared to prior published data, this device shows some notable differences, including a substantially higher saturation temperature of around 200 K for threshold voltage and subthreshold swing due to band tail and a typical low on-resistance down to 33 K, free of freezeout. To account for the observed temperature dependencies, we propose improved semi-empirical temperature scaling equations for the PSPHV model. We extend its applicable temperature range down to 33 K from the previous lower limit of 240 K. The enhancement models the temperature behaviors of key device parameters, including threshold voltage, subthreshold swing, mobility, velocity saturation, drift resistance, and quasi-saturation effects. These results provide new insights into the low-temperature behavior of LDMOS devices for cryogenic electronics applications.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.