{"title":"通过整合视觉和空间结构数据进行街道建筑环境综合识别评估","authors":"Yi Liu , Yang Yang , Qi Dong","doi":"10.1016/j.jum.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><div>Evaluating the recognizability of street built environments provides crucial support for urban planning, security monitoring and navigation. Although street view images (SVIs) are widely used in urban studies, it overlooks the interconnection among different locations, which can also affect perceptions about environmental recognizability. To address this issue, this study proposes a deep learning-based model called RB-Node, which comprehensively integrates spatial structural features in a road network view and visual features from SVIs, achieving 82.56% accuracy. It appears that image information from visual features dominates environmental recognizability. Additionally, structural information contributes significantly to the accurate classification of nodes and waterfront promenade areas. Moreover, scene-text information, a subset of visual features, helps classify commercial and historical areas. Furthermore, 1056 samples were collected through an eye-tracking experiment to validate the recognizability evaluation results, as well as compare the decision-making process between humans and RB-Node. According to the results, RB-Node behaviour and human observed behavior follow similar patterns, although human perceptions tend to be more holistic than RB-Node's. This study contributes to a better understanding of environmental recognizability and provides targeted recommendations for urban renewal.</div></div>","PeriodicalId":45131,"journal":{"name":"Journal of Urban Management","volume":"13 4","pages":"Pages 772-786"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive street built environmental recognizabililty evaluation by integrating visual and spatial structural data\",\"authors\":\"Yi Liu , Yang Yang , Qi Dong\",\"doi\":\"10.1016/j.jum.2024.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Evaluating the recognizability of street built environments provides crucial support for urban planning, security monitoring and navigation. Although street view images (SVIs) are widely used in urban studies, it overlooks the interconnection among different locations, which can also affect perceptions about environmental recognizability. To address this issue, this study proposes a deep learning-based model called RB-Node, which comprehensively integrates spatial structural features in a road network view and visual features from SVIs, achieving 82.56% accuracy. It appears that image information from visual features dominates environmental recognizability. Additionally, structural information contributes significantly to the accurate classification of nodes and waterfront promenade areas. Moreover, scene-text information, a subset of visual features, helps classify commercial and historical areas. Furthermore, 1056 samples were collected through an eye-tracking experiment to validate the recognizability evaluation results, as well as compare the decision-making process between humans and RB-Node. According to the results, RB-Node behaviour and human observed behavior follow similar patterns, although human perceptions tend to be more holistic than RB-Node's. This study contributes to a better understanding of environmental recognizability and provides targeted recommendations for urban renewal.</div></div>\",\"PeriodicalId\":45131,\"journal\":{\"name\":\"Journal of Urban Management\",\"volume\":\"13 4\",\"pages\":\"Pages 772-786\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Urban Management\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2226585624000876\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"URBAN STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban Management","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2226585624000876","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"URBAN STUDIES","Score":null,"Total":0}
Comprehensive street built environmental recognizabililty evaluation by integrating visual and spatial structural data
Evaluating the recognizability of street built environments provides crucial support for urban planning, security monitoring and navigation. Although street view images (SVIs) are widely used in urban studies, it overlooks the interconnection among different locations, which can also affect perceptions about environmental recognizability. To address this issue, this study proposes a deep learning-based model called RB-Node, which comprehensively integrates spatial structural features in a road network view and visual features from SVIs, achieving 82.56% accuracy. It appears that image information from visual features dominates environmental recognizability. Additionally, structural information contributes significantly to the accurate classification of nodes and waterfront promenade areas. Moreover, scene-text information, a subset of visual features, helps classify commercial and historical areas. Furthermore, 1056 samples were collected through an eye-tracking experiment to validate the recognizability evaluation results, as well as compare the decision-making process between humans and RB-Node. According to the results, RB-Node behaviour and human observed behavior follow similar patterns, although human perceptions tend to be more holistic than RB-Node's. This study contributes to a better understanding of environmental recognizability and provides targeted recommendations for urban renewal.
期刊介绍:
Journal of Urban Management (JUM) is the Official Journal of Zhejiang University and the Chinese Association of Urban Management, an international, peer-reviewed open access journal covering planning, administering, regulating, and governing urban complexity.
JUM has its two-fold aims set to integrate the studies across fields in urban planning and management, as well as to provide a more holistic perspective on problem solving.
1) Explore innovative management skills for taming thorny problems that arise with global urbanization
2) Provide a platform to deal with urban affairs whose solutions must be looked at from an interdisciplinary perspective.