Ying Liu , Xiangru Li , Cheng Sun , Qi Dong , Qing Yin , Bin Yan
{"title":"基于 K-means++ 算法的群体热舒适度预测室内热舒适度模型","authors":"Ying Liu , Xiangru Li , Cheng Sun , Qi Dong , Qing Yin , Bin Yan","doi":"10.1016/j.enbuild.2024.115000","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting indoor thermal comfort plays an essential role in controlling energy consumption in buildings. Existing studies have used supervised machine learning to predict thermal comfort, which were more accurate than traditional models. However, these models required occupants’ subjective feedback for model training, which reduced the accuracy of the model. In this study, a prediction model that didn’t require feedback was proposed for the first time using the K-means++ algorithm based on the ASHRAE Global Thermal Comfort Database II. Firstly, the data quality was improved through feature selection, dimensional processing, and feature weighting. Then the influence of different outlier judgment methods, feature weight and data set size on model accuracy were compared. Finally, the K-means++ algorithm was applied for thermal comfort clustering analysis. The result showed that the model with an accuracy higher than 90 % could be constructed using only three factors (CLO, TA, RH), and the proposed model could predict indoor group thermal comfort reliably, and provide a foundation for the indoor thermal sensation evaluation.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"327 ","pages":"Article 115000"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An indoor thermal comfort model for group thermal comfort prediction based on K-means++ algorithm\",\"authors\":\"Ying Liu , Xiangru Li , Cheng Sun , Qi Dong , Qing Yin , Bin Yan\",\"doi\":\"10.1016/j.enbuild.2024.115000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Predicting indoor thermal comfort plays an essential role in controlling energy consumption in buildings. Existing studies have used supervised machine learning to predict thermal comfort, which were more accurate than traditional models. However, these models required occupants’ subjective feedback for model training, which reduced the accuracy of the model. In this study, a prediction model that didn’t require feedback was proposed for the first time using the K-means++ algorithm based on the ASHRAE Global Thermal Comfort Database II. Firstly, the data quality was improved through feature selection, dimensional processing, and feature weighting. Then the influence of different outlier judgment methods, feature weight and data set size on model accuracy were compared. Finally, the K-means++ algorithm was applied for thermal comfort clustering analysis. The result showed that the model with an accuracy higher than 90 % could be constructed using only three factors (CLO, TA, RH), and the proposed model could predict indoor group thermal comfort reliably, and provide a foundation for the indoor thermal sensation evaluation.</div></div>\",\"PeriodicalId\":11641,\"journal\":{\"name\":\"Energy and Buildings\",\"volume\":\"327 \",\"pages\":\"Article 115000\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378778824011162\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778824011162","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
An indoor thermal comfort model for group thermal comfort prediction based on K-means++ algorithm
Predicting indoor thermal comfort plays an essential role in controlling energy consumption in buildings. Existing studies have used supervised machine learning to predict thermal comfort, which were more accurate than traditional models. However, these models required occupants’ subjective feedback for model training, which reduced the accuracy of the model. In this study, a prediction model that didn’t require feedback was proposed for the first time using the K-means++ algorithm based on the ASHRAE Global Thermal Comfort Database II. Firstly, the data quality was improved through feature selection, dimensional processing, and feature weighting. Then the influence of different outlier judgment methods, feature weight and data set size on model accuracy were compared. Finally, the K-means++ algorithm was applied for thermal comfort clustering analysis. The result showed that the model with an accuracy higher than 90 % could be constructed using only three factors (CLO, TA, RH), and the proposed model could predict indoor group thermal comfort reliably, and provide a foundation for the indoor thermal sensation evaluation.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.