Murilo H. Magiotto, Guilherme L. Zanin, Wesley B. Cardoso, Ardiley T. Avelar, Rafael M. Gomes
{"title":"实值函数导数的光学算法","authors":"Murilo H. Magiotto, Guilherme L. Zanin, Wesley B. Cardoso, Ardiley T. Avelar, Rafael M. Gomes","doi":"10.1016/j.optlastec.2024.112137","DOIUrl":null,"url":null,"abstract":"<div><div>The derivation of a function is a fundamental tool for solving problems in calculus. Consequently, the motivations for investigating physical systems capable of performing this task are numerous. Furthermore, the potential to develop an optical computer to replace conventional computers has led us to create an optical algorithm and propose an experimental setup for implementing the derivative of one-dimensional real-valued functions using a paraxial and monochromatic laser beam. To complement the differentiation algorithm, we have experimentally implemented a novel optical algorithm that can transfer a two-dimensional phase-encoded function to the intensity profile of a light beam. Additionally, we demonstrate how to extend the optical algorithm to implement high-order derivatives of two-dimensional real-valued functions encoded in the phase of the transverse profile of photons.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"182 ","pages":"Article 112137"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical algorithm for derivative of real-valued functions\",\"authors\":\"Murilo H. Magiotto, Guilherme L. Zanin, Wesley B. Cardoso, Ardiley T. Avelar, Rafael M. Gomes\",\"doi\":\"10.1016/j.optlastec.2024.112137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The derivation of a function is a fundamental tool for solving problems in calculus. Consequently, the motivations for investigating physical systems capable of performing this task are numerous. Furthermore, the potential to develop an optical computer to replace conventional computers has led us to create an optical algorithm and propose an experimental setup for implementing the derivative of one-dimensional real-valued functions using a paraxial and monochromatic laser beam. To complement the differentiation algorithm, we have experimentally implemented a novel optical algorithm that can transfer a two-dimensional phase-encoded function to the intensity profile of a light beam. Additionally, we demonstrate how to extend the optical algorithm to implement high-order derivatives of two-dimensional real-valued functions encoded in the phase of the transverse profile of photons.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"182 \",\"pages\":\"Article 112137\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224015950\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224015950","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Optical algorithm for derivative of real-valued functions
The derivation of a function is a fundamental tool for solving problems in calculus. Consequently, the motivations for investigating physical systems capable of performing this task are numerous. Furthermore, the potential to develop an optical computer to replace conventional computers has led us to create an optical algorithm and propose an experimental setup for implementing the derivative of one-dimensional real-valued functions using a paraxial and monochromatic laser beam. To complement the differentiation algorithm, we have experimentally implemented a novel optical algorithm that can transfer a two-dimensional phase-encoded function to the intensity profile of a light beam. Additionally, we demonstrate how to extend the optical algorithm to implement high-order derivatives of two-dimensional real-valued functions encoded in the phase of the transverse profile of photons.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems