{"title":"基于视觉的结构位移测量中光学湍流诱发误差的两阶段缓解方法","authors":"Xiulin Zhang , Wensong Zhou , Xize Chen , Yonghuan Wang , Qi Wu","doi":"10.1016/j.measurement.2024.116261","DOIUrl":null,"url":null,"abstract":"<div><div>Vision-based structural displacement measurement techniques have been widely applied. However, the visual sensors used for remote monitoring of structures in high-temperature weather are easily affected by optical turbulence, which introduces errors in displacement measurement. Therefore, this paper proposes a two-stage optical turbulence-induced error alleviation method. In the first stage, the steerable pyramid method is used to decompose the monitoring video and perform temporal filtering on the phase, which can significantly attenuate the motion and distortion caused by optical turbulence in the video. In the second stage, a feature point matching method considering the weighted distance is used to track the multi-point displacement in the reconstructed video to improve the robustness of feature point tracking, and the results are spatially filtered to improve measurement accuracy. The effectiveness of the proposed method has been verified through laboratory experiments and on-site testing.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116261"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-stage mitigation method for optical turbulence-induced errors in vision-based structural displacement measurement\",\"authors\":\"Xiulin Zhang , Wensong Zhou , Xize Chen , Yonghuan Wang , Qi Wu\",\"doi\":\"10.1016/j.measurement.2024.116261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vision-based structural displacement measurement techniques have been widely applied. However, the visual sensors used for remote monitoring of structures in high-temperature weather are easily affected by optical turbulence, which introduces errors in displacement measurement. Therefore, this paper proposes a two-stage optical turbulence-induced error alleviation method. In the first stage, the steerable pyramid method is used to decompose the monitoring video and perform temporal filtering on the phase, which can significantly attenuate the motion and distortion caused by optical turbulence in the video. In the second stage, a feature point matching method considering the weighted distance is used to track the multi-point displacement in the reconstructed video to improve the robustness of feature point tracking, and the results are spatially filtered to improve measurement accuracy. The effectiveness of the proposed method has been verified through laboratory experiments and on-site testing.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"242 \",\"pages\":\"Article 116261\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224124021468\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124021468","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A two-stage mitigation method for optical turbulence-induced errors in vision-based structural displacement measurement
Vision-based structural displacement measurement techniques have been widely applied. However, the visual sensors used for remote monitoring of structures in high-temperature weather are easily affected by optical turbulence, which introduces errors in displacement measurement. Therefore, this paper proposes a two-stage optical turbulence-induced error alleviation method. In the first stage, the steerable pyramid method is used to decompose the monitoring video and perform temporal filtering on the phase, which can significantly attenuate the motion and distortion caused by optical turbulence in the video. In the second stage, a feature point matching method considering the weighted distance is used to track the multi-point displacement in the reconstructed video to improve the robustness of feature point tracking, and the results are spatially filtered to improve measurement accuracy. The effectiveness of the proposed method has been verified through laboratory experiments and on-site testing.
期刊介绍:
Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.