{"title":"通过冷喷沉积的高反射 ZrC-Cu 基金属基复合涂层用于激光防护应用","authors":"Saiful Wali Khan , Ameey Anupam , Ekta Singla , Harpreet Singh","doi":"10.1016/j.optlastec.2024.112171","DOIUrl":null,"url":null,"abstract":"<div><div>Lasers are very powerful and can produce high temperatures, capable of melting materials when projected with an appropriate power, exposure time, distance, and beam width. High energy lasers are used for attacking enemy aircraft and missiles; however, the same threat is inevitable to the allied aircraft and missiles. Surface coatings have proven to be a viable solution to reduce damage from such laser attacks. In the present work, ZrC-Cu-based highly reflective coatings were deposited on Al-6061 alloy using the cold spray to develop laser damage resistance. Microstructural characterization, XRD, micro-hardness, reflectivity measurements, and laser ablation tests were conducted on the developed materials. The results showed improved ceramic retention and mechanical properties along with minimal porosity in the coating with increasing ZrC content in the feedstock. Additionally, the XRD analysis revealed that Cu-ZrC composite coatings could be produced by cold spray, without decarburisation of ZrC or oxidation of Cu. Owing to the exceptional purity in coatings, highly reflective coatings were obtained. At the target wavelength of 1080 nm, Cu-30 %ZrC composition achieved a remarkable reflectivity of 75 % (85 % of bulk copper). The coatings with compositions of Cu-30 %ZrC, Cu-50 %ZrC and Cu-70 %ZrC remained undamaged under laser irradiation, whereas Cu-85 %ZrC exhibited a laser ablation pit. These findings provide valuable insights into developing optimized ZrC-Cu coatings against laser irradiation.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"182 ","pages":"Article 112171"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly reflective ZrC-Cu-based metal matrix composite coatings deposited via cold-spray for laser protection applications\",\"authors\":\"Saiful Wali Khan , Ameey Anupam , Ekta Singla , Harpreet Singh\",\"doi\":\"10.1016/j.optlastec.2024.112171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lasers are very powerful and can produce high temperatures, capable of melting materials when projected with an appropriate power, exposure time, distance, and beam width. High energy lasers are used for attacking enemy aircraft and missiles; however, the same threat is inevitable to the allied aircraft and missiles. Surface coatings have proven to be a viable solution to reduce damage from such laser attacks. In the present work, ZrC-Cu-based highly reflective coatings were deposited on Al-6061 alloy using the cold spray to develop laser damage resistance. Microstructural characterization, XRD, micro-hardness, reflectivity measurements, and laser ablation tests were conducted on the developed materials. The results showed improved ceramic retention and mechanical properties along with minimal porosity in the coating with increasing ZrC content in the feedstock. Additionally, the XRD analysis revealed that Cu-ZrC composite coatings could be produced by cold spray, without decarburisation of ZrC or oxidation of Cu. Owing to the exceptional purity in coatings, highly reflective coatings were obtained. At the target wavelength of 1080 nm, Cu-30 %ZrC composition achieved a remarkable reflectivity of 75 % (85 % of bulk copper). The coatings with compositions of Cu-30 %ZrC, Cu-50 %ZrC and Cu-70 %ZrC remained undamaged under laser irradiation, whereas Cu-85 %ZrC exhibited a laser ablation pit. These findings provide valuable insights into developing optimized ZrC-Cu coatings against laser irradiation.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"182 \",\"pages\":\"Article 112171\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224016293\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224016293","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Highly reflective ZrC-Cu-based metal matrix composite coatings deposited via cold-spray for laser protection applications
Lasers are very powerful and can produce high temperatures, capable of melting materials when projected with an appropriate power, exposure time, distance, and beam width. High energy lasers are used for attacking enemy aircraft and missiles; however, the same threat is inevitable to the allied aircraft and missiles. Surface coatings have proven to be a viable solution to reduce damage from such laser attacks. In the present work, ZrC-Cu-based highly reflective coatings were deposited on Al-6061 alloy using the cold spray to develop laser damage resistance. Microstructural characterization, XRD, micro-hardness, reflectivity measurements, and laser ablation tests were conducted on the developed materials. The results showed improved ceramic retention and mechanical properties along with minimal porosity in the coating with increasing ZrC content in the feedstock. Additionally, the XRD analysis revealed that Cu-ZrC composite coatings could be produced by cold spray, without decarburisation of ZrC or oxidation of Cu. Owing to the exceptional purity in coatings, highly reflective coatings were obtained. At the target wavelength of 1080 nm, Cu-30 %ZrC composition achieved a remarkable reflectivity of 75 % (85 % of bulk copper). The coatings with compositions of Cu-30 %ZrC, Cu-50 %ZrC and Cu-70 %ZrC remained undamaged under laser irradiation, whereas Cu-85 %ZrC exhibited a laser ablation pit. These findings provide valuable insights into developing optimized ZrC-Cu coatings against laser irradiation.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems