{"title":"基于光谱学和机器学习的冻融肌肉食品的识别和检测:综述","authors":"Zecheng Qiu, Xintong Chen, Delang Xie, Yue Ren, Yilin Wang, Zhongshuai Yang, Mei Guo, Yating Song, Jiajun Guo, Yuqin Feng, Ningbo Kang, Guishan Liu","doi":"10.1016/j.tifs.2024.104797","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The use of frozen and thawed muscle food labeled as fresh foods is one of the most common frauds and has attracted widespread attention from consumers, government regulators and retailers. The combination of spectroscopy and machine learning has revolutionized the detection of frozen-thawed muscle foods, making it possible to develop more complex and automated solutions.</div></div><div><h3>Scope and approach</h3><div>This paper comprehensively reviews the latest findings of various studies on the potential characteristics of spectroscopy in frozen-thawed muscle foods. In addition, this paper also discusses the contribution of machine learning in the process of spectral detection and identification of frozen-thawed muscle foods, such as feature engineering, model complexity and model evaluation. The ultimate goal of this review is to highlight the contribution of machine learning and its integration with spectral methods in the identification and detection of frozen-thawed muscle foods.</div></div><div><h3>Key findings and conclusions</h3><div>The combination of spectroscopic techniques and machine learning has successfully achieved the prediction of the quality of frozen-thawed muscle foods and the identification between fresh and frozen-thawed muscle foods. By diminishing reliance on manual feature engineering, machine learning can systematically analyze spectral features and refine models to accurately identify frozen-thawed muscle foods. Concurrently, deep learning and data augmentation techniques effectively tackle challenges related to data variability and quality. Furthermore, advanced technologies such as multimodal machine learning, lifelong learning, ensemble learning and reinforcement learning are expected to play a key role in the future.</div></div>","PeriodicalId":441,"journal":{"name":"Trends in Food Science & Technology","volume":"155 ","pages":"Article 104797"},"PeriodicalIF":15.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and detection of frozen-thawed muscle foods based on spectroscopy and machine learning: A review\",\"authors\":\"Zecheng Qiu, Xintong Chen, Delang Xie, Yue Ren, Yilin Wang, Zhongshuai Yang, Mei Guo, Yating Song, Jiajun Guo, Yuqin Feng, Ningbo Kang, Guishan Liu\",\"doi\":\"10.1016/j.tifs.2024.104797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The use of frozen and thawed muscle food labeled as fresh foods is one of the most common frauds and has attracted widespread attention from consumers, government regulators and retailers. The combination of spectroscopy and machine learning has revolutionized the detection of frozen-thawed muscle foods, making it possible to develop more complex and automated solutions.</div></div><div><h3>Scope and approach</h3><div>This paper comprehensively reviews the latest findings of various studies on the potential characteristics of spectroscopy in frozen-thawed muscle foods. In addition, this paper also discusses the contribution of machine learning in the process of spectral detection and identification of frozen-thawed muscle foods, such as feature engineering, model complexity and model evaluation. The ultimate goal of this review is to highlight the contribution of machine learning and its integration with spectral methods in the identification and detection of frozen-thawed muscle foods.</div></div><div><h3>Key findings and conclusions</h3><div>The combination of spectroscopic techniques and machine learning has successfully achieved the prediction of the quality of frozen-thawed muscle foods and the identification between fresh and frozen-thawed muscle foods. By diminishing reliance on manual feature engineering, machine learning can systematically analyze spectral features and refine models to accurately identify frozen-thawed muscle foods. Concurrently, deep learning and data augmentation techniques effectively tackle challenges related to data variability and quality. Furthermore, advanced technologies such as multimodal machine learning, lifelong learning, ensemble learning and reinforcement learning are expected to play a key role in the future.</div></div>\",\"PeriodicalId\":441,\"journal\":{\"name\":\"Trends in Food Science & Technology\",\"volume\":\"155 \",\"pages\":\"Article 104797\"},\"PeriodicalIF\":15.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Food Science & Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924224424004734\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Food Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924224424004734","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Identification and detection of frozen-thawed muscle foods based on spectroscopy and machine learning: A review
Background
The use of frozen and thawed muscle food labeled as fresh foods is one of the most common frauds and has attracted widespread attention from consumers, government regulators and retailers. The combination of spectroscopy and machine learning has revolutionized the detection of frozen-thawed muscle foods, making it possible to develop more complex and automated solutions.
Scope and approach
This paper comprehensively reviews the latest findings of various studies on the potential characteristics of spectroscopy in frozen-thawed muscle foods. In addition, this paper also discusses the contribution of machine learning in the process of spectral detection and identification of frozen-thawed muscle foods, such as feature engineering, model complexity and model evaluation. The ultimate goal of this review is to highlight the contribution of machine learning and its integration with spectral methods in the identification and detection of frozen-thawed muscle foods.
Key findings and conclusions
The combination of spectroscopic techniques and machine learning has successfully achieved the prediction of the quality of frozen-thawed muscle foods and the identification between fresh and frozen-thawed muscle foods. By diminishing reliance on manual feature engineering, machine learning can systematically analyze spectral features and refine models to accurately identify frozen-thawed muscle foods. Concurrently, deep learning and data augmentation techniques effectively tackle challenges related to data variability and quality. Furthermore, advanced technologies such as multimodal machine learning, lifelong learning, ensemble learning and reinforcement learning are expected to play a key role in the future.
期刊介绍:
Trends in Food Science & Technology is a prestigious international journal that specializes in peer-reviewed articles covering the latest advancements in technology, food science, and human nutrition. It serves as a bridge between specialized primary journals and general trade magazines, providing readable and scientifically rigorous reviews and commentaries on current research developments and their potential applications in the food industry.
Unlike traditional journals, Trends in Food Science & Technology does not publish original research papers. Instead, it focuses on critical and comprehensive reviews to offer valuable insights for professionals in the field. By bringing together cutting-edge research and industry applications, this journal plays a vital role in disseminating knowledge and facilitating advancements in the food science and technology sector.