四元数的不可减矩阵表示

IF 1 3区 数学 Q1 MATHEMATICS
Yu Chen
{"title":"四元数的不可减矩阵表示","authors":"Yu Chen","doi":"10.1016/j.laa.2024.11.010","DOIUrl":null,"url":null,"abstract":"<div><div>We determine all irreducible real and complex matrix representations of quaternions and classify them up to equivalence. More over, we show that there is a one-to-one correspondence between the equivalence classes of the irreducible matrix representations and those of the field homomorphisms from the real numbers to the complex numbers.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"706 ","pages":"Pages 55-69"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irreducible matrix representations of quaternions\",\"authors\":\"Yu Chen\",\"doi\":\"10.1016/j.laa.2024.11.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We determine all irreducible real and complex matrix representations of quaternions and classify them up to equivalence. More over, we show that there is a one-to-one correspondence between the equivalence classes of the irreducible matrix representations and those of the field homomorphisms from the real numbers to the complex numbers.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"706 \",\"pages\":\"Pages 55-69\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524004300\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004300","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了四元数的所有不可还原实数和复数矩阵表示,并对它们进行了等价分类。此外,我们还证明了不可还原矩阵表示的等价类与从实数到复数的场同构类之间存在一一对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irreducible matrix representations of quaternions
We determine all irreducible real and complex matrix representations of quaternions and classify them up to equivalence. More over, we show that there is a one-to-one correspondence between the equivalence classes of the irreducible matrix representations and those of the field homomorphisms from the real numbers to the complex numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信