某些常微分算子的有限差分产生的托普利兹矩阵特征值

IF 1 3区 数学 Q1 MATHEMATICS
M. Bogoya , A. Böttcher , S.M. Grudsky
{"title":"某些常微分算子的有限差分产生的托普利兹矩阵特征值","authors":"M. Bogoya ,&nbsp;A. Böttcher ,&nbsp;S.M. Grudsky","doi":"10.1016/j.laa.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>We consider Hermitian Toeplitz matrices emerging from finite linear combinations with non-negative coefficients of the differential operators <span><math><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup><mo>/</mo><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup></math></span> over the interval <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> after discretizing them on a uniform grid of step size <span><math><mn>1</mn><mo>/</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>. The collective distribution in the Szegő–Weyl sense of the eigenvalues of these matrices as <em>n</em> goes to infinity can be described by GLT theory. However, we focus on the asymptotic behavior of the individual eigenvalues, on both the inner eigenvalues in the bulk and on the extreme eigenvalues. The difficulty of the problem is that not only the order of the matrices depends on <em>n</em> but also their so-called symbols. Our main results are third order asymptotic formulas for the eigenvalues in the case <span><math><mi>k</mi><mo>⩽</mo><mn>2</mn></math></span>. These results reveal some basic phenomena one should expect when considering the problem in full generality.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"706 ","pages":"Pages 24-54"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigenvalues of Toeplitz matrices emerging from finite differences for certain ordinary differential operators\",\"authors\":\"M. Bogoya ,&nbsp;A. Böttcher ,&nbsp;S.M. Grudsky\",\"doi\":\"10.1016/j.laa.2024.11.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider Hermitian Toeplitz matrices emerging from finite linear combinations with non-negative coefficients of the differential operators <span><math><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup><mo>/</mo><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup></math></span> over the interval <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> after discretizing them on a uniform grid of step size <span><math><mn>1</mn><mo>/</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>. The collective distribution in the Szegő–Weyl sense of the eigenvalues of these matrices as <em>n</em> goes to infinity can be described by GLT theory. However, we focus on the asymptotic behavior of the individual eigenvalues, on both the inner eigenvalues in the bulk and on the extreme eigenvalues. The difficulty of the problem is that not only the order of the matrices depends on <em>n</em> but also their so-called symbols. Our main results are third order asymptotic formulas for the eigenvalues in the case <span><math><mi>k</mi><mo>⩽</mo><mn>2</mn></math></span>. These results reveal some basic phenomena one should expect when considering the problem in full generality.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"706 \",\"pages\":\"Pages 24-54\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524004282\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004282","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是在步长为 1/(n+1) 的均匀网格上离散化后,由区间 (0,1) 上微分算子 (-1)kd2k/dx2k 的非负系数有限线性组合产生的赫米蒂托普利兹矩阵。这些矩阵的特征值随着 n 变为无穷大时的 Szegő-Weyl 意义上的集体分布可以用 GLT 理论来描述。不过,我们关注的重点是单个特征值的渐近行为,既包括主体中的内部特征值,也包括极端特征值。问题的难点在于,矩阵的阶数不仅取决于 n,还取决于它们的所谓符号。我们的主要结果是 k⩽2 情况下特征值的三阶渐近公式。这些结果揭示了我们在全面考虑这个问题时应该预料到的一些基本现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenvalues of Toeplitz matrices emerging from finite differences for certain ordinary differential operators
We consider Hermitian Toeplitz matrices emerging from finite linear combinations with non-negative coefficients of the differential operators (1)kd2k/dx2k over the interval (0,1) after discretizing them on a uniform grid of step size 1/(n+1). The collective distribution in the Szegő–Weyl sense of the eigenvalues of these matrices as n goes to infinity can be described by GLT theory. However, we focus on the asymptotic behavior of the individual eigenvalues, on both the inner eigenvalues in the bulk and on the extreme eigenvalues. The difficulty of the problem is that not only the order of the matrices depends on n but also their so-called symbols. Our main results are third order asymptotic formulas for the eigenvalues in the case k2. These results reveal some basic phenomena one should expect when considering the problem in full generality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信