{"title":"基于可解释动态机器学习方法的航空发动机风扇性能气动鲁棒性优化","authors":"Hongzhi CHENG , Ziqing ZHANG , Xingen LU , Penghao DUAN , Junqiang ZHU","doi":"10.1016/j.ress.2024.110654","DOIUrl":null,"url":null,"abstract":"<div><div>Aeroengines and gas turbines are susceptible to uncertainties during manufacturing and operation, leading to reduced efficiency and dispersed performance. Current engine design system often produces deterministic performance databases that cannot be effectively used to guide the uncertainty analysis and robust design process of turbomachinery. This paper proposes an interpretable dynamic machine learning method for sensitivity analysis and robust optimization of turbomachinery blades. A dynamic extreme gradient boosting (XGBoost) is trained to predict fan aerodynamic performance, and the SHapley additional explanation (SHAP) method is introduced to explain regression model behavior and identify the impact of uncertain variables. On this basis, the Lipschitz-based trust region (MAXLIPO-TR) optimization algorithm is used to obtain the optimal configuration with the best robustness performance. Finally, the method is applied to data mining for design guidelines of robustness performance enhancement of an aeroengine fan. The results show that maximum camber and tangential stacking have major effects on fan performance dispersion. The standard deviation of the isentropic efficiency, pressure ratio and mass flow rate of the optimized configuration are reduced by 42.4%, 35.6% and 22.7% respectively at design conditions. The proposed data mining method has scientific significance and industrial application value in the robust design of advanced turbomachinery.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"254 ","pages":"Article 110654"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic robustness optimization of aeroengine fan performance based on an interpretable dynamic machine learning method\",\"authors\":\"Hongzhi CHENG , Ziqing ZHANG , Xingen LU , Penghao DUAN , Junqiang ZHU\",\"doi\":\"10.1016/j.ress.2024.110654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aeroengines and gas turbines are susceptible to uncertainties during manufacturing and operation, leading to reduced efficiency and dispersed performance. Current engine design system often produces deterministic performance databases that cannot be effectively used to guide the uncertainty analysis and robust design process of turbomachinery. This paper proposes an interpretable dynamic machine learning method for sensitivity analysis and robust optimization of turbomachinery blades. A dynamic extreme gradient boosting (XGBoost) is trained to predict fan aerodynamic performance, and the SHapley additional explanation (SHAP) method is introduced to explain regression model behavior and identify the impact of uncertain variables. On this basis, the Lipschitz-based trust region (MAXLIPO-TR) optimization algorithm is used to obtain the optimal configuration with the best robustness performance. Finally, the method is applied to data mining for design guidelines of robustness performance enhancement of an aeroengine fan. The results show that maximum camber and tangential stacking have major effects on fan performance dispersion. The standard deviation of the isentropic efficiency, pressure ratio and mass flow rate of the optimized configuration are reduced by 42.4%, 35.6% and 22.7% respectively at design conditions. The proposed data mining method has scientific significance and industrial application value in the robust design of advanced turbomachinery.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"254 \",\"pages\":\"Article 110654\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024007257\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007257","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Aerodynamic robustness optimization of aeroengine fan performance based on an interpretable dynamic machine learning method
Aeroengines and gas turbines are susceptible to uncertainties during manufacturing and operation, leading to reduced efficiency and dispersed performance. Current engine design system often produces deterministic performance databases that cannot be effectively used to guide the uncertainty analysis and robust design process of turbomachinery. This paper proposes an interpretable dynamic machine learning method for sensitivity analysis and robust optimization of turbomachinery blades. A dynamic extreme gradient boosting (XGBoost) is trained to predict fan aerodynamic performance, and the SHapley additional explanation (SHAP) method is introduced to explain regression model behavior and identify the impact of uncertain variables. On this basis, the Lipschitz-based trust region (MAXLIPO-TR) optimization algorithm is used to obtain the optimal configuration with the best robustness performance. Finally, the method is applied to data mining for design guidelines of robustness performance enhancement of an aeroengine fan. The results show that maximum camber and tangential stacking have major effects on fan performance dispersion. The standard deviation of the isentropic efficiency, pressure ratio and mass flow rate of the optimized configuration are reduced by 42.4%, 35.6% and 22.7% respectively at design conditions. The proposed data mining method has scientific significance and industrial application value in the robust design of advanced turbomachinery.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.