Jonas Lampart, Massimo Moscolari, Stefan Teufel, Tom Wessel
{"title":"正温下相互作用晶格费米子的磁化和边缘电流相等","authors":"Jonas Lampart, Massimo Moscolari, Stefan Teufel, Tom Wessel","doi":"10.1007/s11040-024-09495-8","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the magnetization is equal to the edge current in the thermodynamic limit for a large class of models of lattice fermions with finite-range interactions satisfying local indistinguishability of the Gibbs state, a condition known to hold for sufficiently high temperatures. Our result implies that edge currents in such systems are determined by bulk properties and are therefore stable against large perturbations near the boundaries. Moreover, the equality persists also after taking the derivative with respect to the chemical potential. We show that this form of bulk-edge correspondence is essentially a consequence of homogeneity in the bulk and locality of the Gibbs state. An important intermediate result is a new version of Bloch’s theorem for two-dimensional systems, stating that persistent currents vanish in the bulk.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"27 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-024-09495-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Equality of Magnetization and Edge Current for Interacting Lattice Fermions at Positive Temperature\",\"authors\":\"Jonas Lampart, Massimo Moscolari, Stefan Teufel, Tom Wessel\",\"doi\":\"10.1007/s11040-024-09495-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the magnetization is equal to the edge current in the thermodynamic limit for a large class of models of lattice fermions with finite-range interactions satisfying local indistinguishability of the Gibbs state, a condition known to hold for sufficiently high temperatures. Our result implies that edge currents in such systems are determined by bulk properties and are therefore stable against large perturbations near the boundaries. Moreover, the equality persists also after taking the derivative with respect to the chemical potential. We show that this form of bulk-edge correspondence is essentially a consequence of homogeneity in the bulk and locality of the Gibbs state. An important intermediate result is a new version of Bloch’s theorem for two-dimensional systems, stating that persistent currents vanish in the bulk.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-024-09495-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-024-09495-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-024-09495-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Equality of Magnetization and Edge Current for Interacting Lattice Fermions at Positive Temperature
We prove that the magnetization is equal to the edge current in the thermodynamic limit for a large class of models of lattice fermions with finite-range interactions satisfying local indistinguishability of the Gibbs state, a condition known to hold for sufficiently high temperatures. Our result implies that edge currents in such systems are determined by bulk properties and are therefore stable against large perturbations near the boundaries. Moreover, the equality persists also after taking the derivative with respect to the chemical potential. We show that this form of bulk-edge correspondence is essentially a consequence of homogeneity in the bulk and locality of the Gibbs state. An important intermediate result is a new version of Bloch’s theorem for two-dimensional systems, stating that persistent currents vanish in the bulk.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.