{"title":"为什么轮廓平均法适用于 SEM 计量?分析与验证","authors":"Jingxian Wei;Chenyu Xu;Sihai Zhang","doi":"10.1109/TSM.2024.3471635","DOIUrl":null,"url":null,"abstract":"As the technology node in semiconductor manufacturing continuously shrinks, the etch-induced etch bias introduced during the etching process cannot be ignored and necessitates correction. The prevailing approach to addressing this issue is model-based etch bias correction. This method involves simulating the etching process by training an etch model that predicts the bias between the After Development Inspection (ADI) contour and the After Etch Inspection (AEI) contour. However, the reliability of the etch data for model training is compromised due to pattern shrinkage during Scanning Electron Microscope (SEM) imaging, which impairs the model’s prediction accuracy. To mitigate these issues, the contour averaging method is frequently employed, although it lacks thorough theoretical explanation and experimental verification. In this study, we validate the effectiveness of contour averaging theoretically and empirically. A relationship is derived between the prediction error of the etch model and the number of averaged contours, showing that contour averaging minimizes measurement errors of etch data. We also demonstrate the improved prediction accuracy of etch model using contour averaging, with both real and generated etch data.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"535-541"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why Contour Averaging Works for SEM Metrology: Analysis and Validation\",\"authors\":\"Jingxian Wei;Chenyu Xu;Sihai Zhang\",\"doi\":\"10.1109/TSM.2024.3471635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the technology node in semiconductor manufacturing continuously shrinks, the etch-induced etch bias introduced during the etching process cannot be ignored and necessitates correction. The prevailing approach to addressing this issue is model-based etch bias correction. This method involves simulating the etching process by training an etch model that predicts the bias between the After Development Inspection (ADI) contour and the After Etch Inspection (AEI) contour. However, the reliability of the etch data for model training is compromised due to pattern shrinkage during Scanning Electron Microscope (SEM) imaging, which impairs the model’s prediction accuracy. To mitigate these issues, the contour averaging method is frequently employed, although it lacks thorough theoretical explanation and experimental verification. In this study, we validate the effectiveness of contour averaging theoretically and empirically. A relationship is derived between the prediction error of the etch model and the number of averaged contours, showing that contour averaging minimizes measurement errors of etch data. We also demonstrate the improved prediction accuracy of etch model using contour averaging, with both real and generated etch data.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"37 4\",\"pages\":\"535-541\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10701041/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10701041/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Why Contour Averaging Works for SEM Metrology: Analysis and Validation
As the technology node in semiconductor manufacturing continuously shrinks, the etch-induced etch bias introduced during the etching process cannot be ignored and necessitates correction. The prevailing approach to addressing this issue is model-based etch bias correction. This method involves simulating the etching process by training an etch model that predicts the bias between the After Development Inspection (ADI) contour and the After Etch Inspection (AEI) contour. However, the reliability of the etch data for model training is compromised due to pattern shrinkage during Scanning Electron Microscope (SEM) imaging, which impairs the model’s prediction accuracy. To mitigate these issues, the contour averaging method is frequently employed, although it lacks thorough theoretical explanation and experimental verification. In this study, we validate the effectiveness of contour averaging theoretically and empirically. A relationship is derived between the prediction error of the etch model and the number of averaged contours, showing that contour averaging minimizes measurement errors of etch data. We also demonstrate the improved prediction accuracy of etch model using contour averaging, with both real and generated etch data.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.