Ring2Vec 描述方法可准确预测有机太阳能电池的分子特性

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ting Zhang, Kangzhong Wang, Kunlei Jing, Gang Li, Qing Li, Chen Zhang, He Yan
{"title":"Ring2Vec 描述方法可准确预测有机太阳能电池的分子特性","authors":"Ting Zhang, Kangzhong Wang, Kunlei Jing, Gang Li, Qing Li, Chen Zhang, He Yan","doi":"10.1038/s41524-024-01372-w","DOIUrl":null,"url":null,"abstract":"<p>Predicting the properties of non-fullerene acceptors (NFAs), complex organic molecules used in organic solar cells (OSCs), poses a significant challenge. Some existing approaches primarily focus on atom-level information and may overlook high-level molecular features, including the subunits of NFAs. While other methods that effectively represent subunit information show improved prediction performance, they require labor-intensive data labeling. In this paper, we introduce an efficient molecular description method that automatically extracts molecular information at both the atom and subunit levels without any labor-intensive data labeling. Inspired by the Word2Vec method, our Ring2Vec method treats the “rings” in organic molecules as analogous to “words” in sentences. We achieve fast and accurate predictions of the energy levels of NFA molecules, with a minimal prediction error of merely 0.06 eV. Furthermore, our method can potentially have broad applicability across various domains of molecular description and property prediction, owing to the efficiency of the Ring2Vec model.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"129 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells\",\"authors\":\"Ting Zhang, Kangzhong Wang, Kunlei Jing, Gang Li, Qing Li, Chen Zhang, He Yan\",\"doi\":\"10.1038/s41524-024-01372-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting the properties of non-fullerene acceptors (NFAs), complex organic molecules used in organic solar cells (OSCs), poses a significant challenge. Some existing approaches primarily focus on atom-level information and may overlook high-level molecular features, including the subunits of NFAs. While other methods that effectively represent subunit information show improved prediction performance, they require labor-intensive data labeling. In this paper, we introduce an efficient molecular description method that automatically extracts molecular information at both the atom and subunit levels without any labor-intensive data labeling. Inspired by the Word2Vec method, our Ring2Vec method treats the “rings” in organic molecules as analogous to “words” in sentences. We achieve fast and accurate predictions of the energy levels of NFA molecules, with a minimal prediction error of merely 0.06 eV. Furthermore, our method can potentially have broad applicability across various domains of molecular description and property prediction, owing to the efficiency of the Ring2Vec model.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01372-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01372-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

非富勒烯受体(NFA)是有机太阳能电池(OSC)中使用的复杂有机分子,预测其特性是一项重大挑战。现有的一些方法主要关注原子级信息,可能会忽略高层次的分子特征,包括非富勒烯受体的亚基。虽然其他有效表示亚基信息的方法提高了预测性能,但它们需要耗费大量人力进行数据标注。在本文中,我们介绍了一种高效的分子描述方法,它能自动提取原子和亚基层面的分子信息,而无需任何劳动密集型数据标注。受 Word2Vec 方法的启发,我们的 Ring2Vec 方法将有机分子中的 "环 "视为句子中的 "词"。我们能快速准确地预测 NFA 分子的能级,预测误差最小仅为 0.06 eV。此外,由于 Ring2Vec 模型的高效性,我们的方法有可能广泛应用于分子描述和性质预测的各个领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells

A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells

Predicting the properties of non-fullerene acceptors (NFAs), complex organic molecules used in organic solar cells (OSCs), poses a significant challenge. Some existing approaches primarily focus on atom-level information and may overlook high-level molecular features, including the subunits of NFAs. While other methods that effectively represent subunit information show improved prediction performance, they require labor-intensive data labeling. In this paper, we introduce an efficient molecular description method that automatically extracts molecular information at both the atom and subunit levels without any labor-intensive data labeling. Inspired by the Word2Vec method, our Ring2Vec method treats the “rings” in organic molecules as analogous to “words” in sentences. We achieve fast and accurate predictions of the energy levels of NFA molecules, with a minimal prediction error of merely 0.06 eV. Furthermore, our method can potentially have broad applicability across various domains of molecular description and property prediction, owing to the efficiency of the Ring2Vec model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信