Viktoriia Zinkovich, Vadim Sotskov, Alexander Shapeev, Evgeny Podryabinkin
{"title":"用蛮力和机器学习彻底搜索新型多组分合金","authors":"Viktoriia Zinkovich, Vadim Sotskov, Alexander Shapeev, Evgeny Podryabinkin","doi":"10.1038/s41524-024-01452-x","DOIUrl":null,"url":null,"abstract":"<p>We present an algorithm for the high-throughput computational discovery of intermetallic compounds in systems with a large number of components. It is particularly important for high entropy alloys (HEAs), where multiple principal elements can form numerous potential intermetallic compounds during the condensation process, making it challenging to predict the dominant phase. Our algorithm is based on a brute-force evaluation of candidate structures with a fixed underlying lattice (FCC or BCC) accelerated by machine-learning interatomic potentials. The algorithm takes a set of chemical elements and a crystal lattice type as inputs and produces structures on and near the convex hull of thermodynamically stable structures. The candidate structures are evaluated using the low-rank potential (LRP), trained to reproduce energies of structures equilibrated with density functional theory (DFT). Thanks to extreme computational effectiveness of the LRP, it is feasible to evaluate hundreds of thousands of structures per second, per CPU core. Thus, our algorithm screens a complete set of candidate structures for a given system without missing any configurations. We validated our method on systems with BCC (Nb-W, Nb-Mo-W, V-Nb-Mo-Ta-W) and FCC (Cu-Pt, Cu-Pd-Pt, Cu-Pd-Ag-Pt-Au) lattices and discovered 268 new alloys not reported in the AFLOW database<sup>1</sup>, which we used as a benchmark.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"255 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exhaustive search for novel multicomponent alloys with brute force and machine learning\",\"authors\":\"Viktoriia Zinkovich, Vadim Sotskov, Alexander Shapeev, Evgeny Podryabinkin\",\"doi\":\"10.1038/s41524-024-01452-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present an algorithm for the high-throughput computational discovery of intermetallic compounds in systems with a large number of components. It is particularly important for high entropy alloys (HEAs), where multiple principal elements can form numerous potential intermetallic compounds during the condensation process, making it challenging to predict the dominant phase. Our algorithm is based on a brute-force evaluation of candidate structures with a fixed underlying lattice (FCC or BCC) accelerated by machine-learning interatomic potentials. The algorithm takes a set of chemical elements and a crystal lattice type as inputs and produces structures on and near the convex hull of thermodynamically stable structures. The candidate structures are evaluated using the low-rank potential (LRP), trained to reproduce energies of structures equilibrated with density functional theory (DFT). Thanks to extreme computational effectiveness of the LRP, it is feasible to evaluate hundreds of thousands of structures per second, per CPU core. Thus, our algorithm screens a complete set of candidate structures for a given system without missing any configurations. We validated our method on systems with BCC (Nb-W, Nb-Mo-W, V-Nb-Mo-Ta-W) and FCC (Cu-Pt, Cu-Pd-Pt, Cu-Pd-Ag-Pt-Au) lattices and discovered 268 new alloys not reported in the AFLOW database<sup>1</sup>, which we used as a benchmark.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"255 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01452-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01452-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Exhaustive search for novel multicomponent alloys with brute force and machine learning
We present an algorithm for the high-throughput computational discovery of intermetallic compounds in systems with a large number of components. It is particularly important for high entropy alloys (HEAs), where multiple principal elements can form numerous potential intermetallic compounds during the condensation process, making it challenging to predict the dominant phase. Our algorithm is based on a brute-force evaluation of candidate structures with a fixed underlying lattice (FCC or BCC) accelerated by machine-learning interatomic potentials. The algorithm takes a set of chemical elements and a crystal lattice type as inputs and produces structures on and near the convex hull of thermodynamically stable structures. The candidate structures are evaluated using the low-rank potential (LRP), trained to reproduce energies of structures equilibrated with density functional theory (DFT). Thanks to extreme computational effectiveness of the LRP, it is feasible to evaluate hundreds of thousands of structures per second, per CPU core. Thus, our algorithm screens a complete set of candidate structures for a given system without missing any configurations. We validated our method on systems with BCC (Nb-W, Nb-Mo-W, V-Nb-Mo-Ta-W) and FCC (Cu-Pt, Cu-Pd-Pt, Cu-Pd-Ag-Pt-Au) lattices and discovered 268 new alloys not reported in the AFLOW database1, which we used as a benchmark.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.