进化双层优化的高效动态资源分配框架

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Dejun Xu;Kai Ye;Zimo Zheng;Tao Zhou;Gary G. Yen;Min Jiang
{"title":"进化双层优化的高效动态资源分配框架","authors":"Dejun Xu;Kai Ye;Zimo Zheng;Tao Zhou;Gary G. Yen;Min Jiang","doi":"10.1109/TCYB.2024.3492075","DOIUrl":null,"url":null,"abstract":"Bilevel optimization problems (BLOPs) are characterized by an interactive hierarchical structure, where the upper level seeks to optimize its strategy while simultaneously considering the response of the lower level. Evolutionary algorithms are commonly used to solve complex bilevel problems in practical scenarios, but they face significant resource consumption challenges due to the nested structure imposed by the implicit lower-level optimality condition. This challenge becomes even more pronounced as problem dimensions increase. Although recent methods have enhanced bilevel convergence through task-level knowledge sharing, further efficiency improvements are still hindered by redundant lower-level iterations that consume excessive resources while generating unpromising solutions. To overcome this challenge, this article proposes an efficient dynamic resource allocation framework for evolutionary bilevel optimization, named DRC-BLEA. Compared to existing approaches, DRC-BLEA introduces a novel competitive quasi-parallel paradigm, in which multiple lower-level optimization tasks, derived from different upper-level individuals, compete for resources. A continuously updated selection probability is used to prioritize execution opportunities to promising tasks. Additionally, a cooperation mechanism is integrated within the competitive framework to further enhance efficiency and prevent premature convergence. Experimental results compared with chosen state-of-the-art algorithms demonstrate the effectiveness of the proposed method. Specifically, DRC-BLEA achieves competitive accuracy across diverse problem sets and real-world scenarios, while significantly reducing the number of function evaluations and overall running time.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 2","pages":"726-739"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Dynamic Resource Allocation Framework for Evolutionary Bilevel Optimization\",\"authors\":\"Dejun Xu;Kai Ye;Zimo Zheng;Tao Zhou;Gary G. Yen;Min Jiang\",\"doi\":\"10.1109/TCYB.2024.3492075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bilevel optimization problems (BLOPs) are characterized by an interactive hierarchical structure, where the upper level seeks to optimize its strategy while simultaneously considering the response of the lower level. Evolutionary algorithms are commonly used to solve complex bilevel problems in practical scenarios, but they face significant resource consumption challenges due to the nested structure imposed by the implicit lower-level optimality condition. This challenge becomes even more pronounced as problem dimensions increase. Although recent methods have enhanced bilevel convergence through task-level knowledge sharing, further efficiency improvements are still hindered by redundant lower-level iterations that consume excessive resources while generating unpromising solutions. To overcome this challenge, this article proposes an efficient dynamic resource allocation framework for evolutionary bilevel optimization, named DRC-BLEA. Compared to existing approaches, DRC-BLEA introduces a novel competitive quasi-parallel paradigm, in which multiple lower-level optimization tasks, derived from different upper-level individuals, compete for resources. A continuously updated selection probability is used to prioritize execution opportunities to promising tasks. Additionally, a cooperation mechanism is integrated within the competitive framework to further enhance efficiency and prevent premature convergence. Experimental results compared with chosen state-of-the-art algorithms demonstrate the effectiveness of the proposed method. Specifically, DRC-BLEA achieves competitive accuracy across diverse problem sets and real-world scenarios, while significantly reducing the number of function evaluations and overall running time.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 2\",\"pages\":\"726-739\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10765127/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10765127/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Dynamic Resource Allocation Framework for Evolutionary Bilevel Optimization
Bilevel optimization problems (BLOPs) are characterized by an interactive hierarchical structure, where the upper level seeks to optimize its strategy while simultaneously considering the response of the lower level. Evolutionary algorithms are commonly used to solve complex bilevel problems in practical scenarios, but they face significant resource consumption challenges due to the nested structure imposed by the implicit lower-level optimality condition. This challenge becomes even more pronounced as problem dimensions increase. Although recent methods have enhanced bilevel convergence through task-level knowledge sharing, further efficiency improvements are still hindered by redundant lower-level iterations that consume excessive resources while generating unpromising solutions. To overcome this challenge, this article proposes an efficient dynamic resource allocation framework for evolutionary bilevel optimization, named DRC-BLEA. Compared to existing approaches, DRC-BLEA introduces a novel competitive quasi-parallel paradigm, in which multiple lower-level optimization tasks, derived from different upper-level individuals, compete for resources. A continuously updated selection probability is used to prioritize execution opportunities to promising tasks. Additionally, a cooperation mechanism is integrated within the competitive framework to further enhance efficiency and prevent premature convergence. Experimental results compared with chosen state-of-the-art algorithms demonstrate the effectiveness of the proposed method. Specifically, DRC-BLEA achieves competitive accuracy across diverse problem sets and real-world scenarios, while significantly reducing the number of function evaluations and overall running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信