Hui Zou, Jie Song, Xianzu Luo, Waseem Ali, Sifan Li, Ling Xiong, Yan Chen, Yan Yuan, Yonggang Ma, Xishuai Tong, Zongping Liu
{"title":"镉和聚氯乙烯微塑料诱导鸭肾氧化应激下的线粒体损伤和凋亡","authors":"Hui Zou, Jie Song, Xianzu Luo, Waseem Ali, Sifan Li, Ling Xiong, Yan Chen, Yan Yuan, Yonggang Ma, Xishuai Tong, Zongping Liu","doi":"10.1016/j.psj.2024.104490","DOIUrl":null,"url":null,"abstract":"<p><p>Polyvinyl chloride microplastics (PVC-MPs) and Cadmium (Cd) are widely occurring water pollutants that interact with each other to exert toxic effects. As a waterfowl, Muscovy duck is more susceptible to PVC-MPs and Cd than land poultry. In this study, Muscovy duck was used as a research model, and 10 mg/L PVC-MPs and 50 mg/kg Cd were used alone and in combine to explore the effect on the kidney of Muscovy duck. We found that treatment of Cd or PVC-MPs alone changed the kidney weight, increased creatinine and urea nitrogen content, and disrupted oxidative balance and macro/trace element metabolism, while the combination of PVC-MPs+Cd reduced the accumulation of Cd in the kidney. In addition, treatment of Cd and PVC-MPs alone caused mitochondrial damage, increase or decrease of mitochondria-associated proteins (Fis1, Drp1, PGC-1α, Nrf1), and Nrf2 signaling pathway plays a key role in detoxification and alleviation of oxidative stress, and we found that PVC-MPs+Cd treatment recovered related proteins (Nrf2, Keap-1, HO-1, NQO1, AC-SOD<sub>2</sub>, SOD<sub>2</sub>) compared with the Cd and PVC-MPs alone treatment. Finally, we detected changes in apoptosis-related proteins and genes (Caspase-3, Caspase-9, Bax, Bcl-2, Cytc) and TUNEL staining, and after PVC-MPs+Cd treatment, apoptosis-related proteins/genes recovered and the apoptosis rate decreased compared with the Cd and PVC-MPs alone treatment. These results indicate that renal function is impaired, oxidative stress and trace element metabolism disorder, nuclear factor-E2 related factor 2 (Nrf2) is activated into the nucleus to induce the expression of related antioxidant proteins (such as HO-1, NQO1). These injuries can induce mitochondrial damage and eventually lead to renal cell apoptosis. To sum up, these evidence show that Cd or PVC-MPs can induce kidney oxidative damage, trace element metabolism disorder, mitochondrial damage and apoptosis.</p>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 1","pages":"104490"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cadmium and polyvinyl chloride microplastics induce mitochondrial damage and apoptosis under oxidative stress in duck kidney.\",\"authors\":\"Hui Zou, Jie Song, Xianzu Luo, Waseem Ali, Sifan Li, Ling Xiong, Yan Chen, Yan Yuan, Yonggang Ma, Xishuai Tong, Zongping Liu\",\"doi\":\"10.1016/j.psj.2024.104490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyvinyl chloride microplastics (PVC-MPs) and Cadmium (Cd) are widely occurring water pollutants that interact with each other to exert toxic effects. As a waterfowl, Muscovy duck is more susceptible to PVC-MPs and Cd than land poultry. In this study, Muscovy duck was used as a research model, and 10 mg/L PVC-MPs and 50 mg/kg Cd were used alone and in combine to explore the effect on the kidney of Muscovy duck. We found that treatment of Cd or PVC-MPs alone changed the kidney weight, increased creatinine and urea nitrogen content, and disrupted oxidative balance and macro/trace element metabolism, while the combination of PVC-MPs+Cd reduced the accumulation of Cd in the kidney. In addition, treatment of Cd and PVC-MPs alone caused mitochondrial damage, increase or decrease of mitochondria-associated proteins (Fis1, Drp1, PGC-1α, Nrf1), and Nrf2 signaling pathway plays a key role in detoxification and alleviation of oxidative stress, and we found that PVC-MPs+Cd treatment recovered related proteins (Nrf2, Keap-1, HO-1, NQO1, AC-SOD<sub>2</sub>, SOD<sub>2</sub>) compared with the Cd and PVC-MPs alone treatment. Finally, we detected changes in apoptosis-related proteins and genes (Caspase-3, Caspase-9, Bax, Bcl-2, Cytc) and TUNEL staining, and after PVC-MPs+Cd treatment, apoptosis-related proteins/genes recovered and the apoptosis rate decreased compared with the Cd and PVC-MPs alone treatment. These results indicate that renal function is impaired, oxidative stress and trace element metabolism disorder, nuclear factor-E2 related factor 2 (Nrf2) is activated into the nucleus to induce the expression of related antioxidant proteins (such as HO-1, NQO1). These injuries can induce mitochondrial damage and eventually lead to renal cell apoptosis. To sum up, these evidence show that Cd or PVC-MPs can induce kidney oxidative damage, trace element metabolism disorder, mitochondrial damage and apoptosis.</p>\",\"PeriodicalId\":20459,\"journal\":{\"name\":\"Poultry Science\",\"volume\":\"104 1\",\"pages\":\"104490\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Poultry Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.psj.2024.104490\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.psj.2024.104490","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Cadmium and polyvinyl chloride microplastics induce mitochondrial damage and apoptosis under oxidative stress in duck kidney.
Polyvinyl chloride microplastics (PVC-MPs) and Cadmium (Cd) are widely occurring water pollutants that interact with each other to exert toxic effects. As a waterfowl, Muscovy duck is more susceptible to PVC-MPs and Cd than land poultry. In this study, Muscovy duck was used as a research model, and 10 mg/L PVC-MPs and 50 mg/kg Cd were used alone and in combine to explore the effect on the kidney of Muscovy duck. We found that treatment of Cd or PVC-MPs alone changed the kidney weight, increased creatinine and urea nitrogen content, and disrupted oxidative balance and macro/trace element metabolism, while the combination of PVC-MPs+Cd reduced the accumulation of Cd in the kidney. In addition, treatment of Cd and PVC-MPs alone caused mitochondrial damage, increase or decrease of mitochondria-associated proteins (Fis1, Drp1, PGC-1α, Nrf1), and Nrf2 signaling pathway plays a key role in detoxification and alleviation of oxidative stress, and we found that PVC-MPs+Cd treatment recovered related proteins (Nrf2, Keap-1, HO-1, NQO1, AC-SOD2, SOD2) compared with the Cd and PVC-MPs alone treatment. Finally, we detected changes in apoptosis-related proteins and genes (Caspase-3, Caspase-9, Bax, Bcl-2, Cytc) and TUNEL staining, and after PVC-MPs+Cd treatment, apoptosis-related proteins/genes recovered and the apoptosis rate decreased compared with the Cd and PVC-MPs alone treatment. These results indicate that renal function is impaired, oxidative stress and trace element metabolism disorder, nuclear factor-E2 related factor 2 (Nrf2) is activated into the nucleus to induce the expression of related antioxidant proteins (such as HO-1, NQO1). These injuries can induce mitochondrial damage and eventually lead to renal cell apoptosis. To sum up, these evidence show that Cd or PVC-MPs can induce kidney oxidative damage, trace element metabolism disorder, mitochondrial damage and apoptosis.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.