{"title":"凝血酶依赖性激活 TGF-β 在癌症相关血栓形成中的可能作用:对治疗的启示。","authors":"Marta Smeda, Ebrahim H Maleki, Agnieszka Jasztal","doi":"10.1007/s10555-024-10222-6","DOIUrl":null,"url":null,"abstract":"<p><p>While the prevalence of cancer-associated thrombosis (CAT) is high in cancer patients, its molecular mechanisms have not been fully elucidated. Moreover, the risks of recurrent CAT events and mortality remain high in cancer patients despite the introduction of anticoagulant/antiplatelet therapy. Here, we discuss the possibility that increased plasmin activity driven by anticoagulant/antiplatelet treatment might be the major mechanism responsible for the activation of an excess of cancer-derived transforming growth factor-beta (TGF-β) originating from cancer cells and the tumour microenvironment. Hence, high coagulation and fibrinolysis rates in cancer patients may be linked to high rates of TGF-β activation, especially the excess of TGF-β derived from cancer cells. In turn, high TGF-β activation could contribute directly to maintaining high thrombotic risk and CAT recurrence in cancer patients since TGF-β signalling increases gene expression and secretion of the fibrinolysis inhibitor plasminogen activator inhibitor 1 (PAI1). Thus, TGF-β could directly contribute to the high number of deaths among patients with cancer experiencing CAT, despite anticoagulant/antiplatelet treatment. In a longer-term perspective, increased TGF-β activation, by supporting a pro-coagulant cancer microenvironment, might also accelerate cancer progression. This review aims to discuss the published evidence that might support the scenario described above, and to put forward the hypothesis that cancer patients experiencing CAT events would largely benefit from anti-TGF-β therapy.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":"44 1","pages":"2"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584501/pdf/","citationCount":"0","resultStr":"{\"title\":\"A possible role of plasmin-dependent activation of TGF-β in cancer-associated thrombosis: Implications for therapy.\",\"authors\":\"Marta Smeda, Ebrahim H Maleki, Agnieszka Jasztal\",\"doi\":\"10.1007/s10555-024-10222-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While the prevalence of cancer-associated thrombosis (CAT) is high in cancer patients, its molecular mechanisms have not been fully elucidated. Moreover, the risks of recurrent CAT events and mortality remain high in cancer patients despite the introduction of anticoagulant/antiplatelet therapy. Here, we discuss the possibility that increased plasmin activity driven by anticoagulant/antiplatelet treatment might be the major mechanism responsible for the activation of an excess of cancer-derived transforming growth factor-beta (TGF-β) originating from cancer cells and the tumour microenvironment. Hence, high coagulation and fibrinolysis rates in cancer patients may be linked to high rates of TGF-β activation, especially the excess of TGF-β derived from cancer cells. In turn, high TGF-β activation could contribute directly to maintaining high thrombotic risk and CAT recurrence in cancer patients since TGF-β signalling increases gene expression and secretion of the fibrinolysis inhibitor plasminogen activator inhibitor 1 (PAI1). Thus, TGF-β could directly contribute to the high number of deaths among patients with cancer experiencing CAT, despite anticoagulant/antiplatelet treatment. In a longer-term perspective, increased TGF-β activation, by supporting a pro-coagulant cancer microenvironment, might also accelerate cancer progression. This review aims to discuss the published evidence that might support the scenario described above, and to put forward the hypothesis that cancer patients experiencing CAT events would largely benefit from anti-TGF-β therapy.</p>\",\"PeriodicalId\":9489,\"journal\":{\"name\":\"Cancer and Metastasis Reviews\",\"volume\":\"44 1\",\"pages\":\"2\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584501/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer and Metastasis Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10555-024-10222-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer and Metastasis Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10555-024-10222-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
A possible role of plasmin-dependent activation of TGF-β in cancer-associated thrombosis: Implications for therapy.
While the prevalence of cancer-associated thrombosis (CAT) is high in cancer patients, its molecular mechanisms have not been fully elucidated. Moreover, the risks of recurrent CAT events and mortality remain high in cancer patients despite the introduction of anticoagulant/antiplatelet therapy. Here, we discuss the possibility that increased plasmin activity driven by anticoagulant/antiplatelet treatment might be the major mechanism responsible for the activation of an excess of cancer-derived transforming growth factor-beta (TGF-β) originating from cancer cells and the tumour microenvironment. Hence, high coagulation and fibrinolysis rates in cancer patients may be linked to high rates of TGF-β activation, especially the excess of TGF-β derived from cancer cells. In turn, high TGF-β activation could contribute directly to maintaining high thrombotic risk and CAT recurrence in cancer patients since TGF-β signalling increases gene expression and secretion of the fibrinolysis inhibitor plasminogen activator inhibitor 1 (PAI1). Thus, TGF-β could directly contribute to the high number of deaths among patients with cancer experiencing CAT, despite anticoagulant/antiplatelet treatment. In a longer-term perspective, increased TGF-β activation, by supporting a pro-coagulant cancer microenvironment, might also accelerate cancer progression. This review aims to discuss the published evidence that might support the scenario described above, and to put forward the hypothesis that cancer patients experiencing CAT events would largely benefit from anti-TGF-β therapy.
期刊介绍:
Contemporary biomedical research is on the threshold of an era in which physiological and pathological processes can be analyzed in increasingly precise and mechanistic terms.The transformation of biology from a largely descriptive, phenomenological discipline to one in which the regulatory principles can be understood and manipulated with predictability brings a new dimension to the study of cancer and the search for effective therapeutic modalities for this disease. Cancer and Metastasis Reviews provides a forum for critical review and discussion of these challenging developments.
A major function of the journal is to review some of the more important and interesting recent developments in the biology and treatment of malignant disease, as well as to highlight new and promising directions, be they technological or conceptual. Contributors are encouraged to review their personal work and be speculative.