{"title":"电热活化软材料:机理、方法和应用","authors":"Chengyun Long, Rui Wang, Yongyu Wang, Hongbo Lan, Xiaoyang Zhu, Yuan-Fang Zhang","doi":"10.1016/j.pmatsci.2024.101406","DOIUrl":null,"url":null,"abstract":"Responsive soft materials, with unique advantages of light weight, flexibility and large deformation upon activation, have attracted extensive attention in the fields of aerospace engineering, soft robots and human–computer interaction. Electrothermal activation, enabled by the integration of engineered electrical heaters, is emerging as a new dimension in the design of novel functionalities for devices based on responsive soft materials due to its on-demand heating. However, precise control of the activation behavior, performance synergy and multifunctional integration of these devices remain challenging as they involve multidisciplinary collaboration, requiring a comprehensive assessment from materials science, applied physics and advanced manufacturing. Here, we present an overview of various electrothermally activated soft materials in terms of activation mechanisms, unique performance and functionality under electrothermal activation, followed by a discussion of electrical heating design and fabrication techniques, and finally prospective applications of them. Challenges in electrical heater design, multi-physics modeling and integrated fabrication are critically identified. Perspectives for devices based on electrothermally activated soft materials are presented, including multidisciplinary research, conceptual breakthroughs and demand-driven innovations. This review could provide a roadmap for the next stage of research and contribute to accelerating the development of electrothermally activated soft materials towards real-world applications.","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"63 1","pages":""},"PeriodicalIF":33.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrothermally activated soft materials: Mechanisms, methods and applications\",\"authors\":\"Chengyun Long, Rui Wang, Yongyu Wang, Hongbo Lan, Xiaoyang Zhu, Yuan-Fang Zhang\",\"doi\":\"10.1016/j.pmatsci.2024.101406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Responsive soft materials, with unique advantages of light weight, flexibility and large deformation upon activation, have attracted extensive attention in the fields of aerospace engineering, soft robots and human–computer interaction. Electrothermal activation, enabled by the integration of engineered electrical heaters, is emerging as a new dimension in the design of novel functionalities for devices based on responsive soft materials due to its on-demand heating. However, precise control of the activation behavior, performance synergy and multifunctional integration of these devices remain challenging as they involve multidisciplinary collaboration, requiring a comprehensive assessment from materials science, applied physics and advanced manufacturing. Here, we present an overview of various electrothermally activated soft materials in terms of activation mechanisms, unique performance and functionality under electrothermal activation, followed by a discussion of electrical heating design and fabrication techniques, and finally prospective applications of them. Challenges in electrical heater design, multi-physics modeling and integrated fabrication are critically identified. Perspectives for devices based on electrothermally activated soft materials are presented, including multidisciplinary research, conceptual breakthroughs and demand-driven innovations. This review could provide a roadmap for the next stage of research and contribute to accelerating the development of electrothermally activated soft materials towards real-world applications.\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pmatsci.2024.101406\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.pmatsci.2024.101406","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrothermally activated soft materials: Mechanisms, methods and applications
Responsive soft materials, with unique advantages of light weight, flexibility and large deformation upon activation, have attracted extensive attention in the fields of aerospace engineering, soft robots and human–computer interaction. Electrothermal activation, enabled by the integration of engineered electrical heaters, is emerging as a new dimension in the design of novel functionalities for devices based on responsive soft materials due to its on-demand heating. However, precise control of the activation behavior, performance synergy and multifunctional integration of these devices remain challenging as they involve multidisciplinary collaboration, requiring a comprehensive assessment from materials science, applied physics and advanced manufacturing. Here, we present an overview of various electrothermally activated soft materials in terms of activation mechanisms, unique performance and functionality under electrothermal activation, followed by a discussion of electrical heating design and fabrication techniques, and finally prospective applications of them. Challenges in electrical heater design, multi-physics modeling and integrated fabrication are critically identified. Perspectives for devices based on electrothermally activated soft materials are presented, including multidisciplinary research, conceptual breakthroughs and demand-driven innovations. This review could provide a roadmap for the next stage of research and contribute to accelerating the development of electrothermally activated soft materials towards real-world applications.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.