Ana Rita Pereira, Carlo Bravo, Rui Miguel Ramos, Carina Costa, Alírio Rodrigues, Victor de Freitas, Nuno Mateus, Ricardo Dias, Susana Soares, Joana Oliveira
{"title":"木质素磺酸盐与花青素之间形成的复合物随 pH 值变化的新见解:对颜色和氧化稳定性的影响","authors":"Ana Rita Pereira, Carlo Bravo, Rui Miguel Ramos, Carina Costa, Alírio Rodrigues, Victor de Freitas, Nuno Mateus, Ricardo Dias, Susana Soares, Joana Oliveira","doi":"10.1021/acs.jafc.4c05842","DOIUrl":null,"url":null,"abstract":"Anthocyanins have limited application as natural colorants and antioxidants due to their color loss and instability under certain conditions. This research explores the formation of a complex between lignosulfonates (LS) and cyanidin-3-<i>O</i>-glucoside (C3G) using a multitechnique approach as well as the effect on C3<i>G</i>′s red color, oxidative stability, and antioxidant activity in acidic mediums. All data revealed pH-dependent LS-C3G interactions. The thermodynamic parameters showed weak noncovalent interactions, mainly electrostatic interactions, hydrogen bonds, and hydrophobic effect, with a higher association constant determined at pH 3. Fourier-transform infrared spectroscopy and Zeta-potential experiments further corroborate evidence of these LS-C3G interactions. Fluorescence quenching and lifetime experiments revealed static and dynamic quenching at pH 1 and 3, respectively. UV–visible spectroscopy demonstrated a bathochromic shift upon complex formation and a hyperchromic effect at pH 3 and 4, as a consequence of the improved red color of C3G. Electrochemical results suggested that at pH 3 the LS enhances C3G stability by protecting its oxidizable moieties over time, as well as improving the antioxidant activity of the anthocyanin in the complex.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"8 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Insights into pH-dependent Complex Formation between Lignosulfonates and Anthocyanins: Impact on Color and Oxidative Stability\",\"authors\":\"Ana Rita Pereira, Carlo Bravo, Rui Miguel Ramos, Carina Costa, Alírio Rodrigues, Victor de Freitas, Nuno Mateus, Ricardo Dias, Susana Soares, Joana Oliveira\",\"doi\":\"10.1021/acs.jafc.4c05842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anthocyanins have limited application as natural colorants and antioxidants due to their color loss and instability under certain conditions. This research explores the formation of a complex between lignosulfonates (LS) and cyanidin-3-<i>O</i>-glucoside (C3G) using a multitechnique approach as well as the effect on C3<i>G</i>′s red color, oxidative stability, and antioxidant activity in acidic mediums. All data revealed pH-dependent LS-C3G interactions. The thermodynamic parameters showed weak noncovalent interactions, mainly electrostatic interactions, hydrogen bonds, and hydrophobic effect, with a higher association constant determined at pH 3. Fourier-transform infrared spectroscopy and Zeta-potential experiments further corroborate evidence of these LS-C3G interactions. Fluorescence quenching and lifetime experiments revealed static and dynamic quenching at pH 1 and 3, respectively. UV–visible spectroscopy demonstrated a bathochromic shift upon complex formation and a hyperchromic effect at pH 3 and 4, as a consequence of the improved red color of C3G. Electrochemical results suggested that at pH 3 the LS enhances C3G stability by protecting its oxidizable moieties over time, as well as improving the antioxidant activity of the anthocyanin in the complex.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c05842\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c05842","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
New Insights into pH-dependent Complex Formation between Lignosulfonates and Anthocyanins: Impact on Color and Oxidative Stability
Anthocyanins have limited application as natural colorants and antioxidants due to their color loss and instability under certain conditions. This research explores the formation of a complex between lignosulfonates (LS) and cyanidin-3-O-glucoside (C3G) using a multitechnique approach as well as the effect on C3G′s red color, oxidative stability, and antioxidant activity in acidic mediums. All data revealed pH-dependent LS-C3G interactions. The thermodynamic parameters showed weak noncovalent interactions, mainly electrostatic interactions, hydrogen bonds, and hydrophobic effect, with a higher association constant determined at pH 3. Fourier-transform infrared spectroscopy and Zeta-potential experiments further corroborate evidence of these LS-C3G interactions. Fluorescence quenching and lifetime experiments revealed static and dynamic quenching at pH 1 and 3, respectively. UV–visible spectroscopy demonstrated a bathochromic shift upon complex formation and a hyperchromic effect at pH 3 and 4, as a consequence of the improved red color of C3G. Electrochemical results suggested that at pH 3 the LS enhances C3G stability by protecting its oxidizable moieties over time, as well as improving the antioxidant activity of the anthocyanin in the complex.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.