Guanmian Wei, Feiran Zhao, Ziyi Zhang, Joe M. Regenstein, Yaxin Sang, Peng Zhou
{"title":"传统发酵大豆凝乳中乌玛米-ACE 抑制肽的鉴定与表征","authors":"Guanmian Wei, Feiran Zhao, Ziyi Zhang, Joe M. Regenstein, Yaxin Sang, Peng Zhou","doi":"10.1016/j.foodchem.2024.142160","DOIUrl":null,"url":null,"abstract":"Fermented soybean curds (FSC) are popular because of its umami taste. Its bioactivities are of interest. Peptides in FSC were identified using nano-HPLC-MS/MS, and 11 candidate peptides showing potential umami and ACE inhibitory activities were screened using various databases. Pharmacophore model analysis showed their high probability of ACE inhibition with fit values >2, which showed the peptides bound to umami receptors and ACE mainly through hydrogen bond, and electrostatic and hydrophobic interactions. Additionally, their docking and interaction energy were independent of the peptide length. Three high umami-ACE inhibitory peptides (VE, FEF, and WEEF) were synthesized. Their umami thresholds were WEEF (0.32 mM) < FEF (0.55 mM) < VE (1.10 mM), while their IC<sub>50</sub> were WEEF (85 ± 2 μM) < FEF (170 ± 10 μM) < VE (205 ± 5 μM). NO and ET-1 production were dose-dependent with WEEF showing the best ACE inhibitory activity. The results allowed identification of effective umami agents and ACE inhibitory peptides from fermented soybean products. It could also be useful method for screening potential umami-ACE inhibitory peptides.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"74 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of umami-ACE inhibitory peptides from traditional fermented soybean curds\",\"authors\":\"Guanmian Wei, Feiran Zhao, Ziyi Zhang, Joe M. Regenstein, Yaxin Sang, Peng Zhou\",\"doi\":\"10.1016/j.foodchem.2024.142160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fermented soybean curds (FSC) are popular because of its umami taste. Its bioactivities are of interest. Peptides in FSC were identified using nano-HPLC-MS/MS, and 11 candidate peptides showing potential umami and ACE inhibitory activities were screened using various databases. Pharmacophore model analysis showed their high probability of ACE inhibition with fit values >2, which showed the peptides bound to umami receptors and ACE mainly through hydrogen bond, and electrostatic and hydrophobic interactions. Additionally, their docking and interaction energy were independent of the peptide length. Three high umami-ACE inhibitory peptides (VE, FEF, and WEEF) were synthesized. Their umami thresholds were WEEF (0.32 mM) < FEF (0.55 mM) < VE (1.10 mM), while their IC<sub>50</sub> were WEEF (85 ± 2 μM) < FEF (170 ± 10 μM) < VE (205 ± 5 μM). NO and ET-1 production were dose-dependent with WEEF showing the best ACE inhibitory activity. The results allowed identification of effective umami agents and ACE inhibitory peptides from fermented soybean products. It could also be useful method for screening potential umami-ACE inhibitory peptides.\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2024.142160\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142160","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Identification and characterization of umami-ACE inhibitory peptides from traditional fermented soybean curds
Fermented soybean curds (FSC) are popular because of its umami taste. Its bioactivities are of interest. Peptides in FSC were identified using nano-HPLC-MS/MS, and 11 candidate peptides showing potential umami and ACE inhibitory activities were screened using various databases. Pharmacophore model analysis showed their high probability of ACE inhibition with fit values >2, which showed the peptides bound to umami receptors and ACE mainly through hydrogen bond, and electrostatic and hydrophobic interactions. Additionally, their docking and interaction energy were independent of the peptide length. Three high umami-ACE inhibitory peptides (VE, FEF, and WEEF) were synthesized. Their umami thresholds were WEEF (0.32 mM) < FEF (0.55 mM) < VE (1.10 mM), while their IC50 were WEEF (85 ± 2 μM) < FEF (170 ± 10 μM) < VE (205 ± 5 μM). NO and ET-1 production were dose-dependent with WEEF showing the best ACE inhibitory activity. The results allowed identification of effective umami agents and ACE inhibitory peptides from fermented soybean products. It could also be useful method for screening potential umami-ACE inhibitory peptides.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.