Haifei Chen , Tao Hong , Mingguo Peng , Yanyan Liu , Pengcheng Du , Yanglong Zhao , Yunjie Wang , Huihan Yang
{"title":"新型光催化双层通风窗的性能分析","authors":"Haifei Chen , Tao Hong , Mingguo Peng , Yanyan Liu , Pengcheng Du , Yanglong Zhao , Yunjie Wang , Huihan Yang","doi":"10.1016/j.enbuild.2024.115062","DOIUrl":null,"url":null,"abstract":"<div><div>The application of renewable energy in the building sector has received increasing attention. In this work, a zero-energy photocatalytic double-layer ventilation window was proposed to reduce building energy consumption and improve indoor air quality. The effects of environmental and operational parameters on the system’s performance were investigated through experimental testing and simulation analysis. The results show that the thermal efficiency of the system increases with the rise in solar irradiation, while the degradation rate initially increases and then decreases. The performance of the system is significantly affected by the inlet air speed and temperature. When the photocatalyst is coated on both sides of the window compared to one side under solar irradiation of 600 W/m<sup>2</sup>, the thermal efficiency and degradation rate of the system increase by 29 % and 74 %, respectively. This study demonstrates the potential of photocatalytic double-layer ventilation windows in energy-efficient buildings and provides an important reference for sustainable building design.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"326 ","pages":"Article 115062"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of a novel photocatalytic double-layer ventilation window\",\"authors\":\"Haifei Chen , Tao Hong , Mingguo Peng , Yanyan Liu , Pengcheng Du , Yanglong Zhao , Yunjie Wang , Huihan Yang\",\"doi\":\"10.1016/j.enbuild.2024.115062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The application of renewable energy in the building sector has received increasing attention. In this work, a zero-energy photocatalytic double-layer ventilation window was proposed to reduce building energy consumption and improve indoor air quality. The effects of environmental and operational parameters on the system’s performance were investigated through experimental testing and simulation analysis. The results show that the thermal efficiency of the system increases with the rise in solar irradiation, while the degradation rate initially increases and then decreases. The performance of the system is significantly affected by the inlet air speed and temperature. When the photocatalyst is coated on both sides of the window compared to one side under solar irradiation of 600 W/m<sup>2</sup>, the thermal efficiency and degradation rate of the system increase by 29 % and 74 %, respectively. This study demonstrates the potential of photocatalytic double-layer ventilation windows in energy-efficient buildings and provides an important reference for sustainable building design.</div></div>\",\"PeriodicalId\":11641,\"journal\":{\"name\":\"Energy and Buildings\",\"volume\":\"326 \",\"pages\":\"Article 115062\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378778824011782\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778824011782","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Performance analysis of a novel photocatalytic double-layer ventilation window
The application of renewable energy in the building sector has received increasing attention. In this work, a zero-energy photocatalytic double-layer ventilation window was proposed to reduce building energy consumption and improve indoor air quality. The effects of environmental and operational parameters on the system’s performance were investigated through experimental testing and simulation analysis. The results show that the thermal efficiency of the system increases with the rise in solar irradiation, while the degradation rate initially increases and then decreases. The performance of the system is significantly affected by the inlet air speed and temperature. When the photocatalyst is coated on both sides of the window compared to one side under solar irradiation of 600 W/m2, the thermal efficiency and degradation rate of the system increase by 29 % and 74 %, respectively. This study demonstrates the potential of photocatalytic double-layer ventilation windows in energy-efficient buildings and provides an important reference for sustainable building design.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.