安全强化学习:避免多卫星系统碰撞的最佳编队控制

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Hui Yu;Liqian Dou;Xiuyun Zhang;Jinna Li;Qun Zong
{"title":"安全强化学习:避免多卫星系统碰撞的最佳编队控制","authors":"Hui Yu;Liqian Dou;Xiuyun Zhang;Jinna Li;Qun Zong","doi":"10.1109/TCYB.2024.3491582","DOIUrl":null,"url":null,"abstract":"This article addresses the collision avoidance and formation control problem for multisatellite systems. A novel safe reinforcement learning (RL) algorithm based on an adaptive dynamic programming framework is proposed. The highlights of the algorithm are the adaptive distance-varying learning method to integrate online data with historical data and the usage of the barrier function (BF) to achieve collision avoidance. First, the BF is introduced into the designed cost function such that the multisatellite formation system can achieve obstacle avoidance and guarantee the safety. Next, a safe RL algorithm is developed through the critic network structure. A distance-varying weight is introduced, which combines experience replay samples with extrapolation samples. By minimizing the cost function, the optimal formation control policy can be obtained with an adaptive formation and self-learning ability. Then, the stability and safety of the proposed algorithm are analyzed. Finally, the effectiveness and superiority of the proposed algorithm are verified by numerical simulations.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 1","pages":"447-459"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe Reinforcement Learning: Optimal Formation Control With Collision Avoidance of Multiple Satellite Systems\",\"authors\":\"Hui Yu;Liqian Dou;Xiuyun Zhang;Jinna Li;Qun Zong\",\"doi\":\"10.1109/TCYB.2024.3491582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses the collision avoidance and formation control problem for multisatellite systems. A novel safe reinforcement learning (RL) algorithm based on an adaptive dynamic programming framework is proposed. The highlights of the algorithm are the adaptive distance-varying learning method to integrate online data with historical data and the usage of the barrier function (BF) to achieve collision avoidance. First, the BF is introduced into the designed cost function such that the multisatellite formation system can achieve obstacle avoidance and guarantee the safety. Next, a safe RL algorithm is developed through the critic network structure. A distance-varying weight is introduced, which combines experience replay samples with extrapolation samples. By minimizing the cost function, the optimal formation control policy can be obtained with an adaptive formation and self-learning ability. Then, the stability and safety of the proposed algorithm are analyzed. Finally, the effectiveness and superiority of the proposed algorithm are verified by numerical simulations.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 1\",\"pages\":\"447-459\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10756224/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10756224/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Safe Reinforcement Learning: Optimal Formation Control With Collision Avoidance of Multiple Satellite Systems
This article addresses the collision avoidance and formation control problem for multisatellite systems. A novel safe reinforcement learning (RL) algorithm based on an adaptive dynamic programming framework is proposed. The highlights of the algorithm are the adaptive distance-varying learning method to integrate online data with historical data and the usage of the barrier function (BF) to achieve collision avoidance. First, the BF is introduced into the designed cost function such that the multisatellite formation system can achieve obstacle avoidance and guarantee the safety. Next, a safe RL algorithm is developed through the critic network structure. A distance-varying weight is introduced, which combines experience replay samples with extrapolation samples. By minimizing the cost function, the optimal formation control policy can be obtained with an adaptive formation and self-learning ability. Then, the stability and safety of the proposed algorithm are analyzed. Finally, the effectiveness and superiority of the proposed algorithm are verified by numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信