用于减少锂离子电池枝晶的高性能柔性生物聚合物基氧化 Ce 复合电解质

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
M. Leo Edward , M. Roselin Ranjitha , G. Thennarasu , E. Ranjith Kumar , A.F. Abd El-Rehim , V. Jaisankar
{"title":"用于减少锂离子电池枝晶的高性能柔性生物聚合物基氧化 Ce 复合电解质","authors":"M. Leo Edward ,&nbsp;M. Roselin Ranjitha ,&nbsp;G. Thennarasu ,&nbsp;E. Ranjith Kumar ,&nbsp;A.F. Abd El-Rehim ,&nbsp;V. Jaisankar","doi":"10.1016/j.mssp.2024.109101","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel solid-state composite polymer electrolyte (CPE) that includes Li<sub>7</sub>La<sub>2.5</sub>Ce<sub>0.5</sub>Zr<sub>2</sub>O<sub>12</sub> (Ce-LLZO), chitosan (CS)/agar-agar (AA) polymer, polyethylene glycol (PEG) plasticizer, and LiClO<sub>4</sub> salt. At 25 °C, the CPE<sub>3</sub> formulation, consisting of 15 wt% Ce-LLZO, 60 wt% CS-AA, 15 wt% PEG, and 10 wt% LiClO<sub>4</sub>, demonstrated exceptional lithium (Li)-ion conductivity of 5.18 × 10<sup>-3</sup> S cm<sup>−1</sup> and an optimal transference number (TLi<sup>+</sup>) of 0.937. We assessed the electrochemical stability of CPE<sub>3</sub> using linear sweep voltammetry, which revealed a maximum stability limit of 4.1 V (versus Li/Li+). In addition, the coin cell made with the Li||CPE<sub>3</sub>||NMC configuration had an amazing discharge capacity of 163 mAhg-1 and stayed stable for up to 100 cycles at 0.1 °C in room temperature. Conversely, when subjected to Li-plating/stripping cycles, the symmetric Li||CPE<sub>3</sub>||Li cell exhibited stability for 550 h and maintained a current density of 2.0 mA cm<sup>−2</sup>. Compared to Li-metal, the proposed material exhibited reduced overpotential while simultaneously enhancing electrochemical stability.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109101"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-performance flexible biopolymer-based Ce oxide composite electrolyte for lithium-ion battery dendrite reduction\",\"authors\":\"M. Leo Edward ,&nbsp;M. Roselin Ranjitha ,&nbsp;G. Thennarasu ,&nbsp;E. Ranjith Kumar ,&nbsp;A.F. Abd El-Rehim ,&nbsp;V. Jaisankar\",\"doi\":\"10.1016/j.mssp.2024.109101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a novel solid-state composite polymer electrolyte (CPE) that includes Li<sub>7</sub>La<sub>2.5</sub>Ce<sub>0.5</sub>Zr<sub>2</sub>O<sub>12</sub> (Ce-LLZO), chitosan (CS)/agar-agar (AA) polymer, polyethylene glycol (PEG) plasticizer, and LiClO<sub>4</sub> salt. At 25 °C, the CPE<sub>3</sub> formulation, consisting of 15 wt% Ce-LLZO, 60 wt% CS-AA, 15 wt% PEG, and 10 wt% LiClO<sub>4</sub>, demonstrated exceptional lithium (Li)-ion conductivity of 5.18 × 10<sup>-3</sup> S cm<sup>−1</sup> and an optimal transference number (TLi<sup>+</sup>) of 0.937. We assessed the electrochemical stability of CPE<sub>3</sub> using linear sweep voltammetry, which revealed a maximum stability limit of 4.1 V (versus Li/Li+). In addition, the coin cell made with the Li||CPE<sub>3</sub>||NMC configuration had an amazing discharge capacity of 163 mAhg-1 and stayed stable for up to 100 cycles at 0.1 °C in room temperature. Conversely, when subjected to Li-plating/stripping cycles, the symmetric Li||CPE<sub>3</sub>||Li cell exhibited stability for 550 h and maintained a current density of 2.0 mA cm<sup>−2</sup>. Compared to Li-metal, the proposed material exhibited reduced overpotential while simultaneously enhancing electrochemical stability.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"187 \",\"pages\":\"Article 109101\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800124009971\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124009971","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新型固态复合聚合物电解质 (CPE),其中包括 Li7La2.5Ce0.5Zr2O12 (Ce-LLZO)、壳聚糖 (CS) /琼脂糖 (AA) 聚合物、聚乙二醇 (PEG) 增塑剂和 LiClO4 盐。在 25 °C 时,由 15 wt% Ce-LLZO、60 wt% CS-AA、15 wt% PEG 和 10 wt% LiClO4 组成的 CPE3 配方显示出卓越的锂(Li)离子电导率(5.18 × 10-3 S cm-1)和最佳转移数(TLi+)(0.937)。我们使用线性扫描伏安法评估了 CPE3 的电化学稳定性,结果显示其最大稳定性极限为 4.1 V(相对于 Li/Li+)。此外,采用锂||CPE3||NMC 配置制造的纽扣电池的放电容量达到了惊人的 163 mAhg-1,并且在室温 0.1 °C 下可稳定循环 100 次。相反,当进行锂离子电镀/剥离循环时,对称锂||CPE3||锂电池表现出 550 h 的稳定性,并保持 2.0 mA cm-2 的电流密度。与锂金属相比,所提出的材料降低了过电位,同时提高了电化学稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A high-performance flexible biopolymer-based Ce oxide composite electrolyte for lithium-ion battery dendrite reduction
We propose a novel solid-state composite polymer electrolyte (CPE) that includes Li7La2.5Ce0.5Zr2O12 (Ce-LLZO), chitosan (CS)/agar-agar (AA) polymer, polyethylene glycol (PEG) plasticizer, and LiClO4 salt. At 25 °C, the CPE3 formulation, consisting of 15 wt% Ce-LLZO, 60 wt% CS-AA, 15 wt% PEG, and 10 wt% LiClO4, demonstrated exceptional lithium (Li)-ion conductivity of 5.18 × 10-3 S cm−1 and an optimal transference number (TLi+) of 0.937. We assessed the electrochemical stability of CPE3 using linear sweep voltammetry, which revealed a maximum stability limit of 4.1 V (versus Li/Li+). In addition, the coin cell made with the Li||CPE3||NMC configuration had an amazing discharge capacity of 163 mAhg-1 and stayed stable for up to 100 cycles at 0.1 °C in room temperature. Conversely, when subjected to Li-plating/stripping cycles, the symmetric Li||CPE3||Li cell exhibited stability for 550 h and maintained a current density of 2.0 mA cm−2. Compared to Li-metal, the proposed material exhibited reduced overpotential while simultaneously enhancing electrochemical stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信