Yuyang You , Junsheng Yang , Xiangcou Zheng , Yipeng Xie , Jingkang Lyu , Ashraf S. Osman
{"title":"复杂地形和地质体的三维材料点离散方法:数值实现与应用","authors":"Yuyang You , Junsheng Yang , Xiangcou Zheng , Yipeng Xie , Jingkang Lyu , Ashraf S. Osman","doi":"10.1016/j.compgeo.2024.106884","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of three-dimensional numerical models for complex terrains and geological bodies has always posed a challenge in geoengineering. This study introduces an efficient discretization approach that facilitates the establishment of material point models for three-dimensional complex terrain and geological conditions. The proposed approach incorporates three structural components and employs an efficient algorithm for data processing to characterize terrain and geological bodies within the model. This enables the construction of complex, heterogeneous discrete models using elevation and material information as input data. A detailed procedure for implementing the proposed three-dimensional material point discretization approach is outlined. Additionally, robust metrics for discretization deviation and efficiency evaluation are introduced to assess the accuracy and efficiency of the constructed discretized models. The efficacy of the proposed approach is verified and evaluated through both two-dimensional and three-dimensional examples, demonstrating its accuracy and effectiveness.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106884"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3D material point discretization approach for complex terrain and geological body: Numerical implementation and application\",\"authors\":\"Yuyang You , Junsheng Yang , Xiangcou Zheng , Yipeng Xie , Jingkang Lyu , Ashraf S. Osman\",\"doi\":\"10.1016/j.compgeo.2024.106884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The construction of three-dimensional numerical models for complex terrains and geological bodies has always posed a challenge in geoengineering. This study introduces an efficient discretization approach that facilitates the establishment of material point models for three-dimensional complex terrain and geological conditions. The proposed approach incorporates three structural components and employs an efficient algorithm for data processing to characterize terrain and geological bodies within the model. This enables the construction of complex, heterogeneous discrete models using elevation and material information as input data. A detailed procedure for implementing the proposed three-dimensional material point discretization approach is outlined. Additionally, robust metrics for discretization deviation and efficiency evaluation are introduced to assess the accuracy and efficiency of the constructed discretized models. The efficacy of the proposed approach is verified and evaluated through both two-dimensional and three-dimensional examples, demonstrating its accuracy and effectiveness.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":\"177 \",\"pages\":\"Article 106884\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X24008231\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24008231","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A 3D material point discretization approach for complex terrain and geological body: Numerical implementation and application
The construction of three-dimensional numerical models for complex terrains and geological bodies has always posed a challenge in geoengineering. This study introduces an efficient discretization approach that facilitates the establishment of material point models for three-dimensional complex terrain and geological conditions. The proposed approach incorporates three structural components and employs an efficient algorithm for data processing to characterize terrain and geological bodies within the model. This enables the construction of complex, heterogeneous discrete models using elevation and material information as input data. A detailed procedure for implementing the proposed three-dimensional material point discretization approach is outlined. Additionally, robust metrics for discretization deviation and efficiency evaluation are introduced to assess the accuracy and efficiency of the constructed discretized models. The efficacy of the proposed approach is verified and evaluated through both two-dimensional and three-dimensional examples, demonstrating its accuracy and effectiveness.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.