Benjamin F Cornish , Karen Van Ooteghem , Matthew Wong , Kyle S Weber , Frederico Pieruccini-Faria , Manuel Montero-Odasso , William E McIlroy
{"title":"评估利用脚踝加速度计测量步速的有限状态机算法:不同步速、任务和个人行走能力下的性能表现","authors":"Benjamin F Cornish , Karen Van Ooteghem , Matthew Wong , Kyle S Weber , Frederico Pieruccini-Faria , Manuel Montero-Odasso , William E McIlroy","doi":"10.1016/j.medengphy.2024.104251","DOIUrl":null,"url":null,"abstract":"<div><div>Wearable sensors, including accelerometers, are a widely accepted tool to assess gait in clinical and free-living environments. Methods to identify phases and subphases of the gait cycle are necessary for comprehensive assessment of pathological gait. The current study evaluated the accuracy of a finite state machine (FSM) algorithm to detect strides by identifying gait cycle subphases from ankle-worn accelerometry. Algorithm performance was challenged across a range of speeds (0.4-2.6 m/s), task conditions (e.g., single- and dual-task walking), and individual characteristics. Specifically, the study included a range of treadmill speeds in young adults and overground walking conditions in older adults with neurological disease. Manually counted and algorithm-derived stride detection from acceleration data were evaluated using error analysis and Bland-Altman plots for visualization. Overall, the algorithm successfully detected strides (>96 % accuracy) across gait speed ranges and tasks, for young and older adults. The accuracy of an FSM algorithm combined with ankle-worn accelerometers, provides an analytical approach with affordable and portable tools that permits comprehensive assessment of gait unbounded by setting and proves to perform well in in walking tasks characterized by variable walking. These algorithm capabilities and advancements are critical for identifying phase dependent gait impairments in clinical and free-living assessment.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"133 ","pages":"Article 104251"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a finite state machine algorithm to measure stepping with ankle accelerometry: Performance across a range of gait speeds, tasks, and individual walking ability\",\"authors\":\"Benjamin F Cornish , Karen Van Ooteghem , Matthew Wong , Kyle S Weber , Frederico Pieruccini-Faria , Manuel Montero-Odasso , William E McIlroy\",\"doi\":\"10.1016/j.medengphy.2024.104251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wearable sensors, including accelerometers, are a widely accepted tool to assess gait in clinical and free-living environments. Methods to identify phases and subphases of the gait cycle are necessary for comprehensive assessment of pathological gait. The current study evaluated the accuracy of a finite state machine (FSM) algorithm to detect strides by identifying gait cycle subphases from ankle-worn accelerometry. Algorithm performance was challenged across a range of speeds (0.4-2.6 m/s), task conditions (e.g., single- and dual-task walking), and individual characteristics. Specifically, the study included a range of treadmill speeds in young adults and overground walking conditions in older adults with neurological disease. Manually counted and algorithm-derived stride detection from acceleration data were evaluated using error analysis and Bland-Altman plots for visualization. Overall, the algorithm successfully detected strides (>96 % accuracy) across gait speed ranges and tasks, for young and older adults. The accuracy of an FSM algorithm combined with ankle-worn accelerometers, provides an analytical approach with affordable and portable tools that permits comprehensive assessment of gait unbounded by setting and proves to perform well in in walking tasks characterized by variable walking. These algorithm capabilities and advancements are critical for identifying phase dependent gait impairments in clinical and free-living assessment.</div></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"133 \",\"pages\":\"Article 104251\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324001528\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001528","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Evaluation of a finite state machine algorithm to measure stepping with ankle accelerometry: Performance across a range of gait speeds, tasks, and individual walking ability
Wearable sensors, including accelerometers, are a widely accepted tool to assess gait in clinical and free-living environments. Methods to identify phases and subphases of the gait cycle are necessary for comprehensive assessment of pathological gait. The current study evaluated the accuracy of a finite state machine (FSM) algorithm to detect strides by identifying gait cycle subphases from ankle-worn accelerometry. Algorithm performance was challenged across a range of speeds (0.4-2.6 m/s), task conditions (e.g., single- and dual-task walking), and individual characteristics. Specifically, the study included a range of treadmill speeds in young adults and overground walking conditions in older adults with neurological disease. Manually counted and algorithm-derived stride detection from acceleration data were evaluated using error analysis and Bland-Altman plots for visualization. Overall, the algorithm successfully detected strides (>96 % accuracy) across gait speed ranges and tasks, for young and older adults. The accuracy of an FSM algorithm combined with ankle-worn accelerometers, provides an analytical approach with affordable and portable tools that permits comprehensive assessment of gait unbounded by setting and proves to perform well in in walking tasks characterized by variable walking. These algorithm capabilities and advancements are critical for identifying phase dependent gait impairments in clinical and free-living assessment.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.