Yuhao Cao , Manole Iulia , Arnab Majumdar , Yinwei Feng , Xuri Xin , Xinjian Wang , Huanxin Wang , Zaili Yang
{"title":"海上事故风险影响因素调查:新型拓扑和稳健性分析框架","authors":"Yuhao Cao , Manole Iulia , Arnab Majumdar , Yinwei Feng , Xuri Xin , Xinjian Wang , Huanxin Wang , Zaili Yang","doi":"10.1016/j.ress.2024.110636","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to develop a novel and fully data-driven approach to analyse the maritime accidents risk influential factors (RIFs) by integrating Association Rule Mining (ARM) and Complex Network (CN) modelling. Firstly, a comprehensive dataset comprising 21,206 maritime accident records from Marine Accident Investigation Branch and Transportation Safety Board is collected and processed to serve as the foundational data source supporting the development of the new approach. Secondly, a novel Combined Association Rule Mining method is proposed to extract the interconnections among RIFs, with the mined results mapped into a CN framework. Finally, two importance ranking algorithms, namely the PageRank-Information-Entropy algorithm and edge betweenness centrality, are applied to identify the key RIFs and their information transmission paths. By simulating deliberate and random attacks within networks, a robustness analysis is conducted to further explore the evolution of RIFs. The findings reveal that ship-related factors demonstrate greater centrality and connectivity, exerting a more substantial influence on information propagation within the network structure. The robustness analysis illustrates that strategic node and edge removals are effective in preventing risk propagation. It therefore makes contributions to the development of a theoretical basis for stakeholders to develop cost-effective preventive measures against specific RIFs, ultimately enhancing maritime safety.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"254 ","pages":"Article 110636"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the risk influential factors of maritime accidents: A novel topology and robustness analytical framework\",\"authors\":\"Yuhao Cao , Manole Iulia , Arnab Majumdar , Yinwei Feng , Xuri Xin , Xinjian Wang , Huanxin Wang , Zaili Yang\",\"doi\":\"10.1016/j.ress.2024.110636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to develop a novel and fully data-driven approach to analyse the maritime accidents risk influential factors (RIFs) by integrating Association Rule Mining (ARM) and Complex Network (CN) modelling. Firstly, a comprehensive dataset comprising 21,206 maritime accident records from Marine Accident Investigation Branch and Transportation Safety Board is collected and processed to serve as the foundational data source supporting the development of the new approach. Secondly, a novel Combined Association Rule Mining method is proposed to extract the interconnections among RIFs, with the mined results mapped into a CN framework. Finally, two importance ranking algorithms, namely the PageRank-Information-Entropy algorithm and edge betweenness centrality, are applied to identify the key RIFs and their information transmission paths. By simulating deliberate and random attacks within networks, a robustness analysis is conducted to further explore the evolution of RIFs. The findings reveal that ship-related factors demonstrate greater centrality and connectivity, exerting a more substantial influence on information propagation within the network structure. The robustness analysis illustrates that strategic node and edge removals are effective in preventing risk propagation. It therefore makes contributions to the development of a theoretical basis for stakeholders to develop cost-effective preventive measures against specific RIFs, ultimately enhancing maritime safety.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"254 \",\"pages\":\"Article 110636\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024007075\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007075","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Investigation of the risk influential factors of maritime accidents: A novel topology and robustness analytical framework
This study aims to develop a novel and fully data-driven approach to analyse the maritime accidents risk influential factors (RIFs) by integrating Association Rule Mining (ARM) and Complex Network (CN) modelling. Firstly, a comprehensive dataset comprising 21,206 maritime accident records from Marine Accident Investigation Branch and Transportation Safety Board is collected and processed to serve as the foundational data source supporting the development of the new approach. Secondly, a novel Combined Association Rule Mining method is proposed to extract the interconnections among RIFs, with the mined results mapped into a CN framework. Finally, two importance ranking algorithms, namely the PageRank-Information-Entropy algorithm and edge betweenness centrality, are applied to identify the key RIFs and their information transmission paths. By simulating deliberate and random attacks within networks, a robustness analysis is conducted to further explore the evolution of RIFs. The findings reveal that ship-related factors demonstrate greater centrality and connectivity, exerting a more substantial influence on information propagation within the network structure. The robustness analysis illustrates that strategic node and edge removals are effective in preventing risk propagation. It therefore makes contributions to the development of a theoretical basis for stakeholders to develop cost-effective preventive measures against specific RIFs, ultimately enhancing maritime safety.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.