Yu-Lei Wang , Ji-Hong Zhu , Liang Meng , Tao Liu , Wei-Hong Zhang
{"title":"通过嵌入无序超均匀声子晶体优化设计声学黑洞结构","authors":"Yu-Lei Wang , Ji-Hong Zhu , Liang Meng , Tao Liu , Wei-Hong Zhang","doi":"10.1016/j.advengsoft.2024.103818","DOIUrl":null,"url":null,"abstract":"<div><div>Incorporating the unique energy concentration features of acoustic black hole (ABH) and frequency band gaps of phononic crystals, this paper presents an optimization approach for the acoustic black hole structure by embedding disordered hyperuniform phononic crystal (ABH-DHPC). The operating frequency of the design ABH-DHPC is achieved by manipulating the band-gaps of the DHPC. Specifically, the current work establishes an optimization design method for DHPC band gaps by using an equivalent unit cell instead of the supercell of DHPC to calculate the band gap. The ABH-DHPCs, ranging from 1 mm to 100 m, are meticulously crafted to operate within the frequency range of 0.1–100 kHz. Lastly, samples of centimeter size, manufactured using this method, exhibited a remarkable 40-fold enhancement in vibration response during experiments conducted at 1–2 kHz.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"199 ","pages":"Article 103818"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization design of acoustic black hole structures by embedding disordered hyperuniform phononic crystals\",\"authors\":\"Yu-Lei Wang , Ji-Hong Zhu , Liang Meng , Tao Liu , Wei-Hong Zhang\",\"doi\":\"10.1016/j.advengsoft.2024.103818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Incorporating the unique energy concentration features of acoustic black hole (ABH) and frequency band gaps of phononic crystals, this paper presents an optimization approach for the acoustic black hole structure by embedding disordered hyperuniform phononic crystal (ABH-DHPC). The operating frequency of the design ABH-DHPC is achieved by manipulating the band-gaps of the DHPC. Specifically, the current work establishes an optimization design method for DHPC band gaps by using an equivalent unit cell instead of the supercell of DHPC to calculate the band gap. The ABH-DHPCs, ranging from 1 mm to 100 m, are meticulously crafted to operate within the frequency range of 0.1–100 kHz. Lastly, samples of centimeter size, manufactured using this method, exhibited a remarkable 40-fold enhancement in vibration response during experiments conducted at 1–2 kHz.</div></div>\",\"PeriodicalId\":50866,\"journal\":{\"name\":\"Advances in Engineering Software\",\"volume\":\"199 \",\"pages\":\"Article 103818\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965997824002254\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824002254","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Optimization design of acoustic black hole structures by embedding disordered hyperuniform phononic crystals
Incorporating the unique energy concentration features of acoustic black hole (ABH) and frequency band gaps of phononic crystals, this paper presents an optimization approach for the acoustic black hole structure by embedding disordered hyperuniform phononic crystal (ABH-DHPC). The operating frequency of the design ABH-DHPC is achieved by manipulating the band-gaps of the DHPC. Specifically, the current work establishes an optimization design method for DHPC band gaps by using an equivalent unit cell instead of the supercell of DHPC to calculate the band gap. The ABH-DHPCs, ranging from 1 mm to 100 m, are meticulously crafted to operate within the frequency range of 0.1–100 kHz. Lastly, samples of centimeter size, manufactured using this method, exhibited a remarkable 40-fold enhancement in vibration response during experiments conducted at 1–2 kHz.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.