Faezeh A․F․ Lahiji , Biplab Paul , Arnaud le Febvrier , Per Eklund
{"title":"在麝香云母和 c-Al2O3 基底上常规外延氧化镍薄膜","authors":"Faezeh A․F․ Lahiji , Biplab Paul , Arnaud le Febvrier , Per Eklund","doi":"10.1016/j.tsf.2024.140566","DOIUrl":null,"url":null,"abstract":"<div><div>Fiber-textured and epitaxial NiO thin films were deposited on Si(100), c-Al<sub>2</sub>O<sub>3</sub>, and muscovite mica(001) substrates using reactive magnetron sputtering at substrate temperatures of 300 °C and 400 °C, to investigate the effect of film thickness and substrate temperature on epitaxial growth of NiO films. The as-deposited films exhibited a face-centered cubic structure with a larger lattice constant, attributed to strain induced during the sputtering process. With an increase in substrate temperature to 400 °C, the d-spacing decreased due to strain release, approaching the NiO bulk value for the thickest film. The NiO film grown on Si(100) displayed fiber texture. On c-plane sapphire, NiO thin films exhibited twin domains and three-fold symmetry, consistent with expected crystallographic orientation relationship for NaCl-structured materials on sapphire:<span><math><mrow><mspace></mspace><msub><mrow><mo>(</mo><mn>111</mn><mo>)</mo></mrow><mrow><mi>N</mi><mi>i</mi><mi>O</mi></mrow></msub><mrow><mo>∥</mo><msub><mrow><mo>(</mo><mn>0001</mn><mo>)</mo></mrow><mrow><mi>A</mi><msub><mi>l</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></msub><mrow><mspace></mspace><mtext>and</mtext><mspace></mspace></mrow><msub><mrow><mo>[</mo><mrow><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>]</mo></mrow><mrow><mi>N</mi><mi>i</mi><mi>O</mi><mspace></mspace></mrow></msub><mo>∥</mo></mrow><msub><mrow><mo>[</mo><mrow><mover><mn>1</mn><mo>¯</mo></mover><mn>010</mn></mrow><mo>]</mo></mrow><mrow><mi>A</mi><mi>l</mi><mn>2</mn><mi>O</mi><mn>3</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>01</mn><mover><mn>1</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow><mrow><mi>N</mi><mi>i</mi><mi>O</mi><mspace></mspace></mrow></msub><mrow><mo>∥</mo></mrow><msub><mrow><mo>[</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>]</mo></mrow><mrow><mi>A</mi><mi>l</mi><mn>2</mn><mi>O</mi><mn>3</mn></mrow></msub></mrow></math></span>. On muscovite mica(001) substrates, the observed epitaxial shows that the mechanism is conventional epitaxy, rather than van der Waals epitaxy, consistent with the epitaxial growth of the non-layered non-van-der-Waals compound NiO. The epitaxial relationship was identified as of <span><math><mrow><msub><mrow><mo>(</mo><mn>111</mn><mo>)</mo></mrow><mrow><mi>N</mi><mi>i</mi><mi>O</mi></mrow></msub><mrow><mo>∥</mo></mrow><msub><mrow><mo>(</mo><mn>001</mn><mo>)</mo></mrow><mrow><mi>M</mi><mi>i</mi><mi>c</mi><mi>a</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>]</mo></mrow><mrow><mi>N</mi><mi>i</mi><mi>O</mi><mspace></mspace></mrow></msub><mrow><mo>∥</mo></mrow><msub><mrow><mo>[</mo><mn>010</mn><mo>]</mo></mrow><mrow><mi>M</mi><mi>i</mi><mi>c</mi><mi>a</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>01</mn><mover><mn>1</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow><mrow><mi>N</mi><mi>i</mi><mi>O</mi><mspace></mspace></mrow></msub><mrow><mo>∥</mo></mrow><msub><mrow><mo>[</mo><mrow><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>]</mo></mrow><mrow><mi>M</mi><mi>i</mi><mi>c</mi><mi>a</mi></mrow></msub></mrow></math></span>.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"808 ","pages":"Article 140566"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conventional epitaxy of NiO thin films on muscovite mica and c-Al2O3 substrates\",\"authors\":\"Faezeh A․F․ Lahiji , Biplab Paul , Arnaud le Febvrier , Per Eklund\",\"doi\":\"10.1016/j.tsf.2024.140566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fiber-textured and epitaxial NiO thin films were deposited on Si(100), c-Al<sub>2</sub>O<sub>3</sub>, and muscovite mica(001) substrates using reactive magnetron sputtering at substrate temperatures of 300 °C and 400 °C, to investigate the effect of film thickness and substrate temperature on epitaxial growth of NiO films. The as-deposited films exhibited a face-centered cubic structure with a larger lattice constant, attributed to strain induced during the sputtering process. With an increase in substrate temperature to 400 °C, the d-spacing decreased due to strain release, approaching the NiO bulk value for the thickest film. The NiO film grown on Si(100) displayed fiber texture. On c-plane sapphire, NiO thin films exhibited twin domains and three-fold symmetry, consistent with expected crystallographic orientation relationship for NaCl-structured materials on sapphire:<span><math><mrow><mspace></mspace><msub><mrow><mo>(</mo><mn>111</mn><mo>)</mo></mrow><mrow><mi>N</mi><mi>i</mi><mi>O</mi></mrow></msub><mrow><mo>∥</mo><msub><mrow><mo>(</mo><mn>0001</mn><mo>)</mo></mrow><mrow><mi>A</mi><msub><mi>l</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></msub><mrow><mspace></mspace><mtext>and</mtext><mspace></mspace></mrow><msub><mrow><mo>[</mo><mrow><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>]</mo></mrow><mrow><mi>N</mi><mi>i</mi><mi>O</mi><mspace></mspace></mrow></msub><mo>∥</mo></mrow><msub><mrow><mo>[</mo><mrow><mover><mn>1</mn><mo>¯</mo></mover><mn>010</mn></mrow><mo>]</mo></mrow><mrow><mi>A</mi><mi>l</mi><mn>2</mn><mi>O</mi><mn>3</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>01</mn><mover><mn>1</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow><mrow><mi>N</mi><mi>i</mi><mi>O</mi><mspace></mspace></mrow></msub><mrow><mo>∥</mo></mrow><msub><mrow><mo>[</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>]</mo></mrow><mrow><mi>A</mi><mi>l</mi><mn>2</mn><mi>O</mi><mn>3</mn></mrow></msub></mrow></math></span>. On muscovite mica(001) substrates, the observed epitaxial shows that the mechanism is conventional epitaxy, rather than van der Waals epitaxy, consistent with the epitaxial growth of the non-layered non-van-der-Waals compound NiO. The epitaxial relationship was identified as of <span><math><mrow><msub><mrow><mo>(</mo><mn>111</mn><mo>)</mo></mrow><mrow><mi>N</mi><mi>i</mi><mi>O</mi></mrow></msub><mrow><mo>∥</mo></mrow><msub><mrow><mo>(</mo><mn>001</mn><mo>)</mo></mrow><mrow><mi>M</mi><mi>i</mi><mi>c</mi><mi>a</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>]</mo></mrow><mrow><mi>N</mi><mi>i</mi><mi>O</mi><mspace></mspace></mrow></msub><mrow><mo>∥</mo></mrow><msub><mrow><mo>[</mo><mn>010</mn><mo>]</mo></mrow><mrow><mi>M</mi><mi>i</mi><mi>c</mi><mi>a</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mo>[</mo><mrow><mn>01</mn><mover><mn>1</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow><mrow><mi>N</mi><mi>i</mi><mi>O</mi><mspace></mspace></mrow></msub><mrow><mo>∥</mo></mrow><msub><mrow><mo>[</mo><mrow><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>]</mo></mrow><mrow><mi>M</mi><mi>i</mi><mi>c</mi><mi>a</mi></mrow></msub></mrow></math></span>.</div></div>\",\"PeriodicalId\":23182,\"journal\":{\"name\":\"Thin Solid Films\",\"volume\":\"808 \",\"pages\":\"Article 140566\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin Solid Films\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040609024003675\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609024003675","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Conventional epitaxy of NiO thin films on muscovite mica and c-Al2O3 substrates
Fiber-textured and epitaxial NiO thin films were deposited on Si(100), c-Al2O3, and muscovite mica(001) substrates using reactive magnetron sputtering at substrate temperatures of 300 °C and 400 °C, to investigate the effect of film thickness and substrate temperature on epitaxial growth of NiO films. The as-deposited films exhibited a face-centered cubic structure with a larger lattice constant, attributed to strain induced during the sputtering process. With an increase in substrate temperature to 400 °C, the d-spacing decreased due to strain release, approaching the NiO bulk value for the thickest film. The NiO film grown on Si(100) displayed fiber texture. On c-plane sapphire, NiO thin films exhibited twin domains and three-fold symmetry, consistent with expected crystallographic orientation relationship for NaCl-structured materials on sapphire:, . On muscovite mica(001) substrates, the observed epitaxial shows that the mechanism is conventional epitaxy, rather than van der Waals epitaxy, consistent with the epitaxial growth of the non-layered non-van-der-Waals compound NiO. The epitaxial relationship was identified as of and , .
期刊介绍:
Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.