多轴动态载荷下螺旋钢丝绳的精细有限元分析

IF 4 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Huile Li , Huan Yan
{"title":"多轴动态载荷下螺旋钢丝绳的精细有限元分析","authors":"Huile Li ,&nbsp;Huan Yan","doi":"10.1016/j.advengsoft.2024.103823","DOIUrl":null,"url":null,"abstract":"<div><div>Due to high tensile strength, light weight, and good flexibility, the steel wire ropes with helical structures are widely used as crucial load-bearing components in various industrial sectors such as civil engineering. They are subjected to significant vibrations caused by multi-axial dynamic loading during the service period which may eventually result in premature failures. This paper presents a refined finite element analysis method for helical wire ropes under multi-axial dynamic loading. The proposed method employs multi-directional dynamic excitations extracted from the analysis of the overall engineering systems to consider actual loading conditions. Refined finite element analysis of the entire steel wire rope under multi-axial dynamic loading is carried out for the first time based on the global-local finite element model to obtain detailed mechanical responses. The critical rope segment is represented by solid elements taking into account the helical structure, inter-wire frictional contact, slippage, and material nonlinearity, among others, and non-critical segments are simulated with beam elements in the established global-local model, which can achieve good balance between computational efficiency and accuracy. The refined finite element modeling strategy is validated via three numerical examples with comparisons against the results in the literature. The proposed method is illustrated on the suspender cable used in suspension bridges. Detailed mechanical responses and their influencing factors are examined to acquire new insights into the dynamic mechanical characteristics of typical double-helical wire rope. The present work can provide an efficient tool for the assessment of in-service engineering systems containing helical wire ropes.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103823"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refined finite element analysis of helical wire ropes under multi-axial dynamic loading\",\"authors\":\"Huile Li ,&nbsp;Huan Yan\",\"doi\":\"10.1016/j.advengsoft.2024.103823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to high tensile strength, light weight, and good flexibility, the steel wire ropes with helical structures are widely used as crucial load-bearing components in various industrial sectors such as civil engineering. They are subjected to significant vibrations caused by multi-axial dynamic loading during the service period which may eventually result in premature failures. This paper presents a refined finite element analysis method for helical wire ropes under multi-axial dynamic loading. The proposed method employs multi-directional dynamic excitations extracted from the analysis of the overall engineering systems to consider actual loading conditions. Refined finite element analysis of the entire steel wire rope under multi-axial dynamic loading is carried out for the first time based on the global-local finite element model to obtain detailed mechanical responses. The critical rope segment is represented by solid elements taking into account the helical structure, inter-wire frictional contact, slippage, and material nonlinearity, among others, and non-critical segments are simulated with beam elements in the established global-local model, which can achieve good balance between computational efficiency and accuracy. The refined finite element modeling strategy is validated via three numerical examples with comparisons against the results in the literature. The proposed method is illustrated on the suspender cable used in suspension bridges. Detailed mechanical responses and their influencing factors are examined to acquire new insights into the dynamic mechanical characteristics of typical double-helical wire rope. The present work can provide an efficient tool for the assessment of in-service engineering systems containing helical wire ropes.</div></div>\",\"PeriodicalId\":50866,\"journal\":{\"name\":\"Advances in Engineering Software\",\"volume\":\"200 \",\"pages\":\"Article 103823\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965997824002308\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824002308","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

螺旋结构钢丝绳具有抗拉强度高、重量轻、柔韧性好等特点,被广泛用作土木工程等各工业领域的重要承重部件。在使用过程中,它们会受到多轴动态载荷引起的剧烈振动,最终可能导致过早失效。本文提出了一种针对多轴动态载荷下螺旋钢丝绳的精细有限元分析方法。所提出的方法采用了从整体工程系统分析中提取的多方向动态激励,以考虑实际加载条件。基于全局-局部有限元模型,首次对多轴向动态载荷下的整个钢丝绳进行了精细有限元分析,以获得详细的机械响应。考虑到螺旋结构、钢丝间摩擦接触、滑移和材料非线性等因素,关键绳段由实体元素表示,而非关键绳段则在已建立的全局-局部模型中使用梁元素进行模拟,从而在计算效率和精度之间实现了良好的平衡。改进后的有限元建模策略通过三个数值实例进行了验证,并与文献中的结果进行了比较。提出的方法以悬索桥中使用的悬索为例进行了说明。研究了详细的机械响应及其影响因素,从而对典型双螺旋钢丝绳的动态机械特性有了新的认识。本研究可为评估包含螺旋钢丝绳的在役工程系统提供有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refined finite element analysis of helical wire ropes under multi-axial dynamic loading
Due to high tensile strength, light weight, and good flexibility, the steel wire ropes with helical structures are widely used as crucial load-bearing components in various industrial sectors such as civil engineering. They are subjected to significant vibrations caused by multi-axial dynamic loading during the service period which may eventually result in premature failures. This paper presents a refined finite element analysis method for helical wire ropes under multi-axial dynamic loading. The proposed method employs multi-directional dynamic excitations extracted from the analysis of the overall engineering systems to consider actual loading conditions. Refined finite element analysis of the entire steel wire rope under multi-axial dynamic loading is carried out for the first time based on the global-local finite element model to obtain detailed mechanical responses. The critical rope segment is represented by solid elements taking into account the helical structure, inter-wire frictional contact, slippage, and material nonlinearity, among others, and non-critical segments are simulated with beam elements in the established global-local model, which can achieve good balance between computational efficiency and accuracy. The refined finite element modeling strategy is validated via three numerical examples with comparisons against the results in the literature. The proposed method is illustrated on the suspender cable used in suspension bridges. Detailed mechanical responses and their influencing factors are examined to acquire new insights into the dynamic mechanical characteristics of typical double-helical wire rope. The present work can provide an efficient tool for the assessment of in-service engineering systems containing helical wire ropes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Engineering Software
Advances in Engineering Software 工程技术-计算机:跨学科应用
CiteScore
7.70
自引率
4.20%
发文量
169
审稿时长
37 days
期刊介绍: The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving. The scope of the journal includes: • Innovative computational strategies and numerical algorithms for large-scale engineering problems • Analysis and simulation techniques and systems • Model and mesh generation • Control of the accuracy, stability and efficiency of computational process • Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing) • Advanced visualization techniques, virtual environments and prototyping • Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations • Application of object-oriented technology to engineering problems • Intelligent human computer interfaces • Design automation, multidisciplinary design and optimization • CAD, CAE and integrated process and product development systems • Quality and reliability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信