将 Pr3+ 离子活化的 TiO2 纳米粒子作为铜基 (CH3NH2)2CuBr4 过氧化物太阳能电池的电子传输层

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
R. Vishwanath , R. Ranjith , K. Munirathnam , J. Shim , P.C. Nagajyothi , Sabah Ansar , V. Manjunath
{"title":"将 Pr3+ 离子活化的 TiO2 纳米粒子作为铜基 (CH3NH2)2CuBr4 过氧化物太阳能电池的电子传输层","authors":"R. Vishwanath ,&nbsp;R. Ranjith ,&nbsp;K. Munirathnam ,&nbsp;J. Shim ,&nbsp;P.C. Nagajyothi ,&nbsp;Sabah Ansar ,&nbsp;V. Manjunath","doi":"10.1016/j.mssp.2024.109093","DOIUrl":null,"url":null,"abstract":"<div><div>In emerging organic-inorganic perovskite solar cells (PSCs), the role of efficient electron transport layers (ETLs) is critical for electron transfer and hole blocking. TiO<sub>2</sub> is one of the widely reported ETLs but limits the performance of the devices exhibiting restricted electron mobility and numerous defect states. The process of doping rare earth ions has been an effective approach in improving the electronic and optical properties of TiO<sub>2</sub> for enhanced efficiency of PSCs. The present work studies the effect of praseodymium (Pr<sup>3+</sup>) doped TiO<sub>2</sub> prepared via sol-gel technique as electron transport layers for lead-free perovskite solar cells. The X-ray diffraction (XRD) and diffuse reflectance spectroscopy (DRS) studies showed that the crystallite size and bandgap of the particles reduced as a function of Pr<sup>3+</sup> doping concentration. The X-ray photoelectron spectroscopy (XPS) analysis of the samples inferred that Pr<sup>3+</sup> ions majorly remained on the TiO<sub>2</sub> surface. Copper-based (CH<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>CuBr<sub>4</sub> perovskites were synthesized by solution method as an active layer for the solar cells. XRD, FTIR (Fourier Transform Infrared Spectroscopy) and XPS analysis confirmed the formation of 2D-perovskite phase of the samples. The scanning electron microscopy (SEM) analysis of the perovskites revealed well crystalline orthorhombic structures. Current-voltage measurements were carried out to study better passivation properties with rare-earth doping of the ETLs and was found to be most enhanced for 0.07 Pr<sup>3+</sup> concentration. Electro-chemical Impedance Spectroscopy (EIS) studies of the solar cells showed a reduced interface recombination and enhance charge transfer properties as a function of rare-earth dopant concentration. Further, the fabricated perovskite solar cells showcased better performance with xPr<sup>3+</sup>:TiO<sub>2</sub> ETLs and the maximum efficiency of ∼1.25 % was obtained for TiO<sub>2</sub>: 0.07 Pr<sup>3+</sup>.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"186 ","pages":"Article 109093"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pr3+ ions activated TiO2 nanoparticles as electron transport layer for copper based (CH3NH2)2CuBr4 perovskites solar cells\",\"authors\":\"R. Vishwanath ,&nbsp;R. Ranjith ,&nbsp;K. Munirathnam ,&nbsp;J. Shim ,&nbsp;P.C. Nagajyothi ,&nbsp;Sabah Ansar ,&nbsp;V. Manjunath\",\"doi\":\"10.1016/j.mssp.2024.109093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In emerging organic-inorganic perovskite solar cells (PSCs), the role of efficient electron transport layers (ETLs) is critical for electron transfer and hole blocking. TiO<sub>2</sub> is one of the widely reported ETLs but limits the performance of the devices exhibiting restricted electron mobility and numerous defect states. The process of doping rare earth ions has been an effective approach in improving the electronic and optical properties of TiO<sub>2</sub> for enhanced efficiency of PSCs. The present work studies the effect of praseodymium (Pr<sup>3+</sup>) doped TiO<sub>2</sub> prepared via sol-gel technique as electron transport layers for lead-free perovskite solar cells. The X-ray diffraction (XRD) and diffuse reflectance spectroscopy (DRS) studies showed that the crystallite size and bandgap of the particles reduced as a function of Pr<sup>3+</sup> doping concentration. The X-ray photoelectron spectroscopy (XPS) analysis of the samples inferred that Pr<sup>3+</sup> ions majorly remained on the TiO<sub>2</sub> surface. Copper-based (CH<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>CuBr<sub>4</sub> perovskites were synthesized by solution method as an active layer for the solar cells. XRD, FTIR (Fourier Transform Infrared Spectroscopy) and XPS analysis confirmed the formation of 2D-perovskite phase of the samples. The scanning electron microscopy (SEM) analysis of the perovskites revealed well crystalline orthorhombic structures. Current-voltage measurements were carried out to study better passivation properties with rare-earth doping of the ETLs and was found to be most enhanced for 0.07 Pr<sup>3+</sup> concentration. Electro-chemical Impedance Spectroscopy (EIS) studies of the solar cells showed a reduced interface recombination and enhance charge transfer properties as a function of rare-earth dopant concentration. Further, the fabricated perovskite solar cells showcased better performance with xPr<sup>3+</sup>:TiO<sub>2</sub> ETLs and the maximum efficiency of ∼1.25 % was obtained for TiO<sub>2</sub>: 0.07 Pr<sup>3+</sup>.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"186 \",\"pages\":\"Article 109093\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800124009892\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124009892","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在新兴的有机-无机包晶太阳能电池(PSCs)中,高效电子传输层(ETLs)对于电子传输和空穴阻挡至关重要。二氧化钛(TiO2)是被广泛报道的电子传输层之一,但其电子迁移率受限,且存在大量缺陷态,从而限制了器件的性能。掺杂稀土离子是改善 TiO2 电子和光学特性以提高 PSC 效率的有效方法。本论文研究了通过溶胶-凝胶技术制备的掺杂镨(Pr3+)TiO2 作为无铅过氧化物太阳能电池电子传输层的效果。X 射线衍射(XRD)和漫反射光谱(DRS)研究表明,颗粒的晶体尺寸和带隙随 Pr3+ 掺杂浓度的变化而减小。样品的 X 射线光电子能谱(XPS)分析表明,Pr3+ 离子主要停留在 TiO2 表面。采用溶液法合成了铜基 (CH3NH2)2CuBr4 包晶体,作为太阳能电池的活性层。XRD、FTIR(傅立叶变换红外光谱)和 XPS 分析证实了样品形成了二维包晶相。对包晶石的扫描电子显微镜(SEM)分析表明其具有良好的正方晶结构。为了研究 ETL 掺杂稀土后更好的钝化特性,进行了电流-电压测量,结果发现 0.07 Pr3+ 浓度的 ETL 增强效果最好。太阳能电池的电化学阻抗光谱(EIS)研究表明,随着稀土掺杂浓度的增加,界面重组减少,电荷转移特性增强。此外,使用 xPr3+:TiO2 ETL 制作的过氧化物太阳能电池性能更好,TiO2.0.07 Pr3+:TiO2 ETL 的最高效率为 1.25%:0.07 Pr3+ 的最大效率为 1.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pr3+ ions activated TiO2 nanoparticles as electron transport layer for copper based (CH3NH2)2CuBr4 perovskites solar cells
In emerging organic-inorganic perovskite solar cells (PSCs), the role of efficient electron transport layers (ETLs) is critical for electron transfer and hole blocking. TiO2 is one of the widely reported ETLs but limits the performance of the devices exhibiting restricted electron mobility and numerous defect states. The process of doping rare earth ions has been an effective approach in improving the electronic and optical properties of TiO2 for enhanced efficiency of PSCs. The present work studies the effect of praseodymium (Pr3+) doped TiO2 prepared via sol-gel technique as electron transport layers for lead-free perovskite solar cells. The X-ray diffraction (XRD) and diffuse reflectance spectroscopy (DRS) studies showed that the crystallite size and bandgap of the particles reduced as a function of Pr3+ doping concentration. The X-ray photoelectron spectroscopy (XPS) analysis of the samples inferred that Pr3+ ions majorly remained on the TiO2 surface. Copper-based (CH3NH2)2CuBr4 perovskites were synthesized by solution method as an active layer for the solar cells. XRD, FTIR (Fourier Transform Infrared Spectroscopy) and XPS analysis confirmed the formation of 2D-perovskite phase of the samples. The scanning electron microscopy (SEM) analysis of the perovskites revealed well crystalline orthorhombic structures. Current-voltage measurements were carried out to study better passivation properties with rare-earth doping of the ETLs and was found to be most enhanced for 0.07 Pr3+ concentration. Electro-chemical Impedance Spectroscopy (EIS) studies of the solar cells showed a reduced interface recombination and enhance charge transfer properties as a function of rare-earth dopant concentration. Further, the fabricated perovskite solar cells showcased better performance with xPr3+:TiO2 ETLs and the maximum efficiency of ∼1.25 % was obtained for TiO2: 0.07 Pr3+.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信