Saba Khursheed Khan , Joydeep Dutta , Ishtiyaq Ahmad , Mohd Ashraf Rather
{"title":"水产养殖中的纳米技术:改变粮食安全的未来","authors":"Saba Khursheed Khan , Joydeep Dutta , Ishtiyaq Ahmad , Mohd Ashraf Rather","doi":"10.1016/j.fochx.2024.101974","DOIUrl":null,"url":null,"abstract":"<div><div>In the face of growing global challenges in food security and increasing demand for sustainable protein sources, the aquaculture industry is undergoing a transformative shift through the integration of nanotechnology. This review paper explores the profound role of nanotechnology in aquaculture, addressing critical issues such as efficient feed utilization, disease management, and environmental sustainability. Nanomaterials are used to enhance nutritional content and digestibility of aquafeed, optimize fish growth and health, and improve disease prevention. Nanoparticle-based vaccines and drug delivery systems reduce antibiotic reliance, while nano sensors monitor water quality in real-time. Furthermore, nanotechnology has revolutionized infrastructure design, contributing to smart, self-regulating aquaculture systems. Despite its vast potential, challenges such as ethical considerations and long-term safety must be addressed. This paper highlights nanotechnology's transformative role in aquaculture, underscoring its potential to contribute significantly to global food security through enhanced productivity and sustainability.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101974"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology in aquaculture: Transforming the future of food security\",\"authors\":\"Saba Khursheed Khan , Joydeep Dutta , Ishtiyaq Ahmad , Mohd Ashraf Rather\",\"doi\":\"10.1016/j.fochx.2024.101974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the face of growing global challenges in food security and increasing demand for sustainable protein sources, the aquaculture industry is undergoing a transformative shift through the integration of nanotechnology. This review paper explores the profound role of nanotechnology in aquaculture, addressing critical issues such as efficient feed utilization, disease management, and environmental sustainability. Nanomaterials are used to enhance nutritional content and digestibility of aquafeed, optimize fish growth and health, and improve disease prevention. Nanoparticle-based vaccines and drug delivery systems reduce antibiotic reliance, while nano sensors monitor water quality in real-time. Furthermore, nanotechnology has revolutionized infrastructure design, contributing to smart, self-regulating aquaculture systems. Despite its vast potential, challenges such as ethical considerations and long-term safety must be addressed. This paper highlights nanotechnology's transformative role in aquaculture, underscoring its potential to contribute significantly to global food security through enhanced productivity and sustainability.</div></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"24 \",\"pages\":\"Article 101974\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590157524008629\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524008629","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Nanotechnology in aquaculture: Transforming the future of food security
In the face of growing global challenges in food security and increasing demand for sustainable protein sources, the aquaculture industry is undergoing a transformative shift through the integration of nanotechnology. This review paper explores the profound role of nanotechnology in aquaculture, addressing critical issues such as efficient feed utilization, disease management, and environmental sustainability. Nanomaterials are used to enhance nutritional content and digestibility of aquafeed, optimize fish growth and health, and improve disease prevention. Nanoparticle-based vaccines and drug delivery systems reduce antibiotic reliance, while nano sensors monitor water quality in real-time. Furthermore, nanotechnology has revolutionized infrastructure design, contributing to smart, self-regulating aquaculture systems. Despite its vast potential, challenges such as ethical considerations and long-term safety must be addressed. This paper highlights nanotechnology's transformative role in aquaculture, underscoring its potential to contribute significantly to global food security through enhanced productivity and sustainability.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.