先进封装应用中用于再分布层的低温光成像电介质

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shie-Ping Chang , Zih-I Chuang , Yun-Jung Wu , E-Ming Ho , Yuan-Chiu Huang , Kuan-Neng Chen
{"title":"先进封装应用中用于再分布层的低温光成像电介质","authors":"Shie-Ping Chang ,&nbsp;Zih-I Chuang ,&nbsp;Yun-Jung Wu ,&nbsp;E-Ming Ho ,&nbsp;Yuan-Chiu Huang ,&nbsp;Kuan-Neng Chen","doi":"10.1016/j.mssp.2024.109083","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the low-temperature photo imageable dielectric (LT-PID) as a next-generation material for redistribution layers (RDLs) in advanced packaging applications, with a focus on high-performance computing (HPC) and Artificial Intelligence (AI). LT-PID provides several critical advantages, including exceptionally low curing shrinkage, superior adhesion to key substrates such as silicon (Si), silicon oxide (SiO<sub>x</sub>), silicon nitride (SiN<sub>x</sub>), and copper (Cu), and robust thermal stability at lower processing temperatures. These properties make LT-PID an excellent candidate for enhancing the mechanical stability and reliability of fine-pitch interposers, a crucial requirement for heterogeneous integration in advanced packaging technologies. In addition, the optimization of lithography and plasma descum processes has shown that LT-PID contributes to improved contact resistance and uniform surface morphology. The use of O<sub>2</sub>/SF<sub>6</sub> plasma descum significantly reduces via-bottom residue, further enhancing the electrical performance of Cu interconnects.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"186 ","pages":"Article 109083"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-temperature photo imageable dielectric for redistribution layers in advanced packaging application\",\"authors\":\"Shie-Ping Chang ,&nbsp;Zih-I Chuang ,&nbsp;Yun-Jung Wu ,&nbsp;E-Ming Ho ,&nbsp;Yuan-Chiu Huang ,&nbsp;Kuan-Neng Chen\",\"doi\":\"10.1016/j.mssp.2024.109083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the low-temperature photo imageable dielectric (LT-PID) as a next-generation material for redistribution layers (RDLs) in advanced packaging applications, with a focus on high-performance computing (HPC) and Artificial Intelligence (AI). LT-PID provides several critical advantages, including exceptionally low curing shrinkage, superior adhesion to key substrates such as silicon (Si), silicon oxide (SiO<sub>x</sub>), silicon nitride (SiN<sub>x</sub>), and copper (Cu), and robust thermal stability at lower processing temperatures. These properties make LT-PID an excellent candidate for enhancing the mechanical stability and reliability of fine-pitch interposers, a crucial requirement for heterogeneous integration in advanced packaging technologies. In addition, the optimization of lithography and plasma descum processes has shown that LT-PID contributes to improved contact resistance and uniform surface morphology. The use of O<sub>2</sub>/SF<sub>6</sub> plasma descum significantly reduces via-bottom residue, further enhancing the electrical performance of Cu interconnects.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"186 \",\"pages\":\"Article 109083\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136980012400979X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136980012400979X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了作为先进封装应用中再分布层 (RDL) 下一代材料的低温光致图像电介质 (LT-PID),重点关注高性能计算 (HPC) 和人工智能 (AI)。LT-PID 具有多项关键优势,包括极低的固化收缩率、与硅 (Si)、氧化硅 (SiOx)、氮化硅 (SiNx) 和铜 (Cu) 等关键基底的出色粘附性,以及在较低加工温度下的强大热稳定性。这些特性使 LT-PID 成为提高细间距插针机械稳定性和可靠性的绝佳候选材料,而这正是先进封装技术中异质集成的关键要求。此外,光刻和等离子除渣工艺的优化表明,LT-PID 还有助于提高接触电阻和均匀的表面形态。使用 O2/SF6 等离子体除渣可显著减少通孔底部残留物,进一步提高铜互连器件的电气性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-temperature photo imageable dielectric for redistribution layers in advanced packaging application
This study investigates the low-temperature photo imageable dielectric (LT-PID) as a next-generation material for redistribution layers (RDLs) in advanced packaging applications, with a focus on high-performance computing (HPC) and Artificial Intelligence (AI). LT-PID provides several critical advantages, including exceptionally low curing shrinkage, superior adhesion to key substrates such as silicon (Si), silicon oxide (SiOx), silicon nitride (SiNx), and copper (Cu), and robust thermal stability at lower processing temperatures. These properties make LT-PID an excellent candidate for enhancing the mechanical stability and reliability of fine-pitch interposers, a crucial requirement for heterogeneous integration in advanced packaging technologies. In addition, the optimization of lithography and plasma descum processes has shown that LT-PID contributes to improved contact resistance and uniform surface morphology. The use of O2/SF6 plasma descum significantly reduces via-bottom residue, further enhancing the electrical performance of Cu interconnects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信