Xuan-Tien Kévin Trinh, Pauline Lecomte-Grosbras, Jean-François Witz, Olivier Mayeur, Shengheng Cao, Jaime Destouesse, François Lesaffre, Michel Cosson, Tien-Tuan Dao
{"title":"确定 3d 打印生物可吸收热敏聚合物的构成规律,以设计用于软组织重建的医疗器械。","authors":"Xuan-Tien Kévin Trinh, Pauline Lecomte-Grosbras, Jean-François Witz, Olivier Mayeur, Shengheng Cao, Jaime Destouesse, François Lesaffre, Michel Cosson, Tien-Tuan Dao","doi":"10.1080/10255842.2024.2427114","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer concerns 1 in 8 women in the world and is followed in 40% of cases by a mastectomy. Only 14% of women receive reconstructive surgery because of unfavorable clinical issues. The need of innovative tissue engineering devices leads Lattice Medical company to bring a new 3D-printed device, allowing the regeneration of soft tissue in order to replace the withdrawn breast. The implant, based on TEC (tissue engineering chamber) and fat-flat surgical technique, is constituted with bioresorbable thermosensitive materials to be fully absorbed by the body in several months, once the regeneration process is completed. In this industrial context, we need to assess some properties for predictive simulation: the TEC mechanical and biological properties over time, its sensitivity to implantation in the body temperature, its batch raw material variability and its structural 3D-printed behavior. This would lead to a more enlightened numerical design and topological optimization work. To do so, mechanical testing are conducted to gather necessaries information for fully border the behaviour of the material and eventually the impact of the process on the final prosthesis. Then, the G'sell Law is chosen to model the mechanical behaviour of the material taking into account all particularities of this medical case. Finally, the behaviour law is used in Finite Element Method (FEM) in a compression simulation to compare with experimental results which find good similarity in the mechanical response.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-12"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of constitutive law for 3d-printed bioresorbable thermosensitive polymer to design medical devices for soft tissue reconstruction.\",\"authors\":\"Xuan-Tien Kévin Trinh, Pauline Lecomte-Grosbras, Jean-François Witz, Olivier Mayeur, Shengheng Cao, Jaime Destouesse, François Lesaffre, Michel Cosson, Tien-Tuan Dao\",\"doi\":\"10.1080/10255842.2024.2427114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer concerns 1 in 8 women in the world and is followed in 40% of cases by a mastectomy. Only 14% of women receive reconstructive surgery because of unfavorable clinical issues. The need of innovative tissue engineering devices leads Lattice Medical company to bring a new 3D-printed device, allowing the regeneration of soft tissue in order to replace the withdrawn breast. The implant, based on TEC (tissue engineering chamber) and fat-flat surgical technique, is constituted with bioresorbable thermosensitive materials to be fully absorbed by the body in several months, once the regeneration process is completed. In this industrial context, we need to assess some properties for predictive simulation: the TEC mechanical and biological properties over time, its sensitivity to implantation in the body temperature, its batch raw material variability and its structural 3D-printed behavior. This would lead to a more enlightened numerical design and topological optimization work. To do so, mechanical testing are conducted to gather necessaries information for fully border the behaviour of the material and eventually the impact of the process on the final prosthesis. Then, the G'sell Law is chosen to model the mechanical behaviour of the material taking into account all particularities of this medical case. Finally, the behaviour law is used in Finite Element Method (FEM) in a compression simulation to compare with experimental results which find good similarity in the mechanical response.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2024.2427114\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2427114","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
全世界每 8 名妇女中就有 1 人罹患乳腺癌,40% 的患者会接受乳房切除手术。由于不利的临床问题,只有 14% 的妇女接受了整形手术。对创新型组织工程设备的需求促使莱迪思医疗公司推出了一种新型 3D 打印设备,可使软组织再生,以替代切除的乳房。这种植入物基于 TEC(组织工程腔室)和脂肪平坦手术技术,由生物可吸收热敏材料构成,一旦再生过程完成,几个月后就会被人体完全吸收。在这种工业背景下,我们需要对一些特性进行评估,以便进行预测性模拟:TEC 随时间变化的机械和生物特性、其对植入体温的敏感性、其批量原材料的可变性以及其结构性 3D 打印行为。这将有助于进行更明智的数值设计和拓扑优化工作。为此,需要进行机械测试,收集必要的信息,以全面了解材料的行为,并最终了解工艺对最终假体的影响。然后,考虑到该医疗案例的所有特殊性,选择 G'sell 法来模拟材料的机械性能。最后,在有限元法(FEM)中使用该行为定律进行压缩模拟,与实验结果进行比较,发现两者在机械响应方面非常相似。
Identification of constitutive law for 3d-printed bioresorbable thermosensitive polymer to design medical devices for soft tissue reconstruction.
Breast cancer concerns 1 in 8 women in the world and is followed in 40% of cases by a mastectomy. Only 14% of women receive reconstructive surgery because of unfavorable clinical issues. The need of innovative tissue engineering devices leads Lattice Medical company to bring a new 3D-printed device, allowing the regeneration of soft tissue in order to replace the withdrawn breast. The implant, based on TEC (tissue engineering chamber) and fat-flat surgical technique, is constituted with bioresorbable thermosensitive materials to be fully absorbed by the body in several months, once the regeneration process is completed. In this industrial context, we need to assess some properties for predictive simulation: the TEC mechanical and biological properties over time, its sensitivity to implantation in the body temperature, its batch raw material variability and its structural 3D-printed behavior. This would lead to a more enlightened numerical design and topological optimization work. To do so, mechanical testing are conducted to gather necessaries information for fully border the behaviour of the material and eventually the impact of the process on the final prosthesis. Then, the G'sell Law is chosen to model the mechanical behaviour of the material taking into account all particularities of this medical case. Finally, the behaviour law is used in Finite Element Method (FEM) in a compression simulation to compare with experimental results which find good similarity in the mechanical response.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.