Lei Wang, Na Qin, Liuliu Shi, Rujuan Liu, Ting Zhu
{"title":"缺血性中风发病机制中的肠道微生物群和色氨酸代谢:食物同源植物的潜在作用。","authors":"Lei Wang, Na Qin, Liuliu Shi, Rujuan Liu, Ting Zhu","doi":"10.1002/mnfr.202400639","DOIUrl":null,"url":null,"abstract":"<p><strong>Scope: </strong>The intestinal flora is involved in the maintenance of human health and the development of diseases, and is closely related to the brain. As an essential amino acid, tryptophan (TRP) participates in a variety of physiological functions in the body and affects the growth and health of the human body. TRP catabolites produced by the gut microbiota are important signaling molecules for microbial communities and host-microbe interactions, and play an important role in maintaining health and disease pathogenesis.</p><p><strong>Methods and results: </strong>The review first demonstrates the evidence of TRP metabolism in stroke and the relationship between gut microbiota and TRP metabolism. Furthermore, the review reveals that food homologous plants (FHP) bioactive compounds have been shown to regulate various metabolic pathways of the gut microbiota, including the biosynthesis of valine, leucine, isoleucine, and vitamin B6 metabolism. The most notable metabolic alteration is in TRP metabolism.</p><p><strong>Conclusion: </strong>The interaction between gut microbiota and TRP metabolism offers a plausible explanation for the notable bioactivities of FHP in the treatment of ischemic stroke (IS). This review enhances the comprehension of the underlying mechanisms associated with the bioactivity of FHP on IS.</p>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":" ","pages":"e2400639"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gut Microbiota and Tryptophan Metabolism in Pathogenesis of Ischemic Stroke: A Potential Role for Food Homologous Plants.\",\"authors\":\"Lei Wang, Na Qin, Liuliu Shi, Rujuan Liu, Ting Zhu\",\"doi\":\"10.1002/mnfr.202400639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Scope: </strong>The intestinal flora is involved in the maintenance of human health and the development of diseases, and is closely related to the brain. As an essential amino acid, tryptophan (TRP) participates in a variety of physiological functions in the body and affects the growth and health of the human body. TRP catabolites produced by the gut microbiota are important signaling molecules for microbial communities and host-microbe interactions, and play an important role in maintaining health and disease pathogenesis.</p><p><strong>Methods and results: </strong>The review first demonstrates the evidence of TRP metabolism in stroke and the relationship between gut microbiota and TRP metabolism. Furthermore, the review reveals that food homologous plants (FHP) bioactive compounds have been shown to regulate various metabolic pathways of the gut microbiota, including the biosynthesis of valine, leucine, isoleucine, and vitamin B6 metabolism. The most notable metabolic alteration is in TRP metabolism.</p><p><strong>Conclusion: </strong>The interaction between gut microbiota and TRP metabolism offers a plausible explanation for the notable bioactivities of FHP in the treatment of ischemic stroke (IS). This review enhances the comprehension of the underlying mechanisms associated with the bioactivity of FHP on IS.</p>\",\"PeriodicalId\":212,\"journal\":{\"name\":\"Molecular Nutrition & Food Research\",\"volume\":\" \",\"pages\":\"e2400639\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Nutrition & Food Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/mnfr.202400639\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.202400639","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Gut Microbiota and Tryptophan Metabolism in Pathogenesis of Ischemic Stroke: A Potential Role for Food Homologous Plants.
Scope: The intestinal flora is involved in the maintenance of human health and the development of diseases, and is closely related to the brain. As an essential amino acid, tryptophan (TRP) participates in a variety of physiological functions in the body and affects the growth and health of the human body. TRP catabolites produced by the gut microbiota are important signaling molecules for microbial communities and host-microbe interactions, and play an important role in maintaining health and disease pathogenesis.
Methods and results: The review first demonstrates the evidence of TRP metabolism in stroke and the relationship between gut microbiota and TRP metabolism. Furthermore, the review reveals that food homologous plants (FHP) bioactive compounds have been shown to regulate various metabolic pathways of the gut microbiota, including the biosynthesis of valine, leucine, isoleucine, and vitamin B6 metabolism. The most notable metabolic alteration is in TRP metabolism.
Conclusion: The interaction between gut microbiota and TRP metabolism offers a plausible explanation for the notable bioactivities of FHP in the treatment of ischemic stroke (IS). This review enhances the comprehension of the underlying mechanisms associated with the bioactivity of FHP on IS.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.