蔗糖素(三氯蔗糖)在模型系统和食品中加热时氯化碳水化合物降解产物和氨基酸的形成。

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Michael Hellwig
{"title":"蔗糖素(三氯蔗糖)在模型系统和食品中加热时氯化碳水化合物降解产物和氨基酸的形成。","authors":"Michael Hellwig","doi":"10.1021/acs.jafc.4c08059","DOIUrl":null,"url":null,"abstract":"<p><p>Sucralose is an artificial sweetener whose stability during the thermal treatment of food is controversially discussed. In the present work, sucralose was subjected to different kinds of heat treatment either as such, in the presence of protein, or as an ingredient of food. Compared with sucrose, sucralose showed remarkable instability and discoloration after heating at 85-90 °C for 1 h. A chlorinated furan-3-one and different chlorinated dicarbonyl compounds were identified by High-performance liquid chromatography-time-of-flight mass spectrometry (HPLC-TOF-MS) for the first time, indicating that both the 4-chlorogalactosyl residue and the 1,6-dichlorofructosyl residue give rise to novel chlorinated sugar degradation products. When sucralose was heated in the presence of protein, the formation of 3-chlorotyrosine was detected, indicating that sucralose can invoke chlorination of other biomolecules. The influence of the addition of sucralose (0.03-0.1%) to dough on pH value, color development, and HMF formation was tested in baking experiments (muffins, coconut macaroons, cookies). A significantly higher HMF concentration was observed in bakery products, including sucralose, and a chlorinated 1,2-dicarbonyl compound was detected qualitatively in baked cookies. This work shows that sucralose is not stable during baking processes at high temperatures and low moisture contents, thereby confirming recommendations from the German Institute of Risk Assessment not to use sucralose for baking.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of Chlorinated Carbohydrate Degradation Products and Amino Acids during Heating of Sucralose in Model Systems and Food.\",\"authors\":\"Michael Hellwig\",\"doi\":\"10.1021/acs.jafc.4c08059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sucralose is an artificial sweetener whose stability during the thermal treatment of food is controversially discussed. In the present work, sucralose was subjected to different kinds of heat treatment either as such, in the presence of protein, or as an ingredient of food. Compared with sucrose, sucralose showed remarkable instability and discoloration after heating at 85-90 °C for 1 h. A chlorinated furan-3-one and different chlorinated dicarbonyl compounds were identified by High-performance liquid chromatography-time-of-flight mass spectrometry (HPLC-TOF-MS) for the first time, indicating that both the 4-chlorogalactosyl residue and the 1,6-dichlorofructosyl residue give rise to novel chlorinated sugar degradation products. When sucralose was heated in the presence of protein, the formation of 3-chlorotyrosine was detected, indicating that sucralose can invoke chlorination of other biomolecules. The influence of the addition of sucralose (0.03-0.1%) to dough on pH value, color development, and HMF formation was tested in baking experiments (muffins, coconut macaroons, cookies). A significantly higher HMF concentration was observed in bakery products, including sucralose, and a chlorinated 1,2-dicarbonyl compound was detected qualitatively in baked cookies. This work shows that sucralose is not stable during baking processes at high temperatures and low moisture contents, thereby confirming recommendations from the German Institute of Risk Assessment not to use sucralose for baking.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c08059\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c08059","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Formation of Chlorinated Carbohydrate Degradation Products and Amino Acids during Heating of Sucralose in Model Systems and Food.

Formation of Chlorinated Carbohydrate Degradation Products and Amino Acids during Heating of Sucralose in Model Systems and Food.

Sucralose is an artificial sweetener whose stability during the thermal treatment of food is controversially discussed. In the present work, sucralose was subjected to different kinds of heat treatment either as such, in the presence of protein, or as an ingredient of food. Compared with sucrose, sucralose showed remarkable instability and discoloration after heating at 85-90 °C for 1 h. A chlorinated furan-3-one and different chlorinated dicarbonyl compounds were identified by High-performance liquid chromatography-time-of-flight mass spectrometry (HPLC-TOF-MS) for the first time, indicating that both the 4-chlorogalactosyl residue and the 1,6-dichlorofructosyl residue give rise to novel chlorinated sugar degradation products. When sucralose was heated in the presence of protein, the formation of 3-chlorotyrosine was detected, indicating that sucralose can invoke chlorination of other biomolecules. The influence of the addition of sucralose (0.03-0.1%) to dough on pH value, color development, and HMF formation was tested in baking experiments (muffins, coconut macaroons, cookies). A significantly higher HMF concentration was observed in bakery products, including sucralose, and a chlorinated 1,2-dicarbonyl compound was detected qualitatively in baked cookies. This work shows that sucralose is not stable during baking processes at high temperatures and low moisture contents, thereby confirming recommendations from the German Institute of Risk Assessment not to use sucralose for baking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信