基于差分 EGFET 和斩波放大器的高性能葡萄糖生物传感器的实现

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Po-Yu Kuo;Chi-Han Liao;Jung-Chuan Chou;Chih-Hsien Lai;Yu-Hsun Nien;Po-Hui Yang;Ming-Tai Hsu;Cheng-Chun Lien;Wei-Shun Chen;Jyun-Ming Huang;Yu-Wei Chen
{"title":"基于差分 EGFET 和斩波放大器的高性能葡萄糖生物传感器的实现","authors":"Po-Yu Kuo;Chi-Han Liao;Jung-Chuan Chou;Chih-Hsien Lai;Yu-Hsun Nien;Po-Hui Yang;Ming-Tai Hsu;Cheng-Chun Lien;Wei-Shun Chen;Jyun-Ming Huang;Yu-Wei Chen","doi":"10.1109/JEDS.2024.3488367","DOIUrl":null,"url":null,"abstract":"In this paper, a new architecture for glucose biosensors is proposed, which adopts a Chopper amplifier instead of a conventional instrumentation amplifier (INA) and differential extended gate field effect transistor (EGFET) as the input stage. The architecture effectively suppresses low-frequency noises such as flicker noise and significantly improves signal quality while reducing power consumption and layout area. The simulation results indicate that when the chopper frequency is set to 5 kHz, the chopper amplifier effectively reduces the output-referred noise at 1 Hz from 20.01 \n<inline-formula> <tex-math>$\\mu$ </tex-math></inline-formula>\nV/ \n<inline-formula> <tex-math>$\\surd$ </tex-math></inline-formula>\nHz to 394 nV/ \n<inline-formula> <tex-math>$\\surd$ </tex-math></inline-formula>\nHz. In the experimental part, we fabricated a glucose biosensor containing a RuO2 sensing film, and analyzed the surface morphology of the sensor’s working electrode by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The experimental results showed that the biosensor exhibited good linearity (0.998) and sensitivity (82.83 mV/mM) over the glucose concentration range of 3 mM to 7 mM. In addition, the modulation and demodulation capabilities of the Chopper amplifier were verified through Hspice simulations and real-world tests, and it was confirmed to be effective in reducing noise.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"1003-1010"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10738382","citationCount":"0","resultStr":"{\"title\":\"The Implementation of a High-Performance Glucose Biosensor Based on Differential EGFET and Chopper Amplifier\",\"authors\":\"Po-Yu Kuo;Chi-Han Liao;Jung-Chuan Chou;Chih-Hsien Lai;Yu-Hsun Nien;Po-Hui Yang;Ming-Tai Hsu;Cheng-Chun Lien;Wei-Shun Chen;Jyun-Ming Huang;Yu-Wei Chen\",\"doi\":\"10.1109/JEDS.2024.3488367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new architecture for glucose biosensors is proposed, which adopts a Chopper amplifier instead of a conventional instrumentation amplifier (INA) and differential extended gate field effect transistor (EGFET) as the input stage. The architecture effectively suppresses low-frequency noises such as flicker noise and significantly improves signal quality while reducing power consumption and layout area. The simulation results indicate that when the chopper frequency is set to 5 kHz, the chopper amplifier effectively reduces the output-referred noise at 1 Hz from 20.01 \\n<inline-formula> <tex-math>$\\\\mu$ </tex-math></inline-formula>\\nV/ \\n<inline-formula> <tex-math>$\\\\surd$ </tex-math></inline-formula>\\nHz to 394 nV/ \\n<inline-formula> <tex-math>$\\\\surd$ </tex-math></inline-formula>\\nHz. In the experimental part, we fabricated a glucose biosensor containing a RuO2 sensing film, and analyzed the surface morphology of the sensor’s working electrode by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The experimental results showed that the biosensor exhibited good linearity (0.998) and sensitivity (82.83 mV/mM) over the glucose concentration range of 3 mM to 7 mM. In addition, the modulation and demodulation capabilities of the Chopper amplifier were verified through Hspice simulations and real-world tests, and it was confirmed to be effective in reducing noise.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"12 \",\"pages\":\"1003-1010\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10738382\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10738382/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10738382/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的葡萄糖生物传感器架构,它采用斩波放大器代替传统的仪表放大器(INA),并采用差分扩展栅场效应晶体管(EGFET)作为输入级。该架构可有效抑制闪烁噪声等低频噪声,在降低功耗和减少布局面积的同时显著提高信号质量。仿真结果表明,当斩波频率设置为 5 kHz 时,斩波放大器能有效地将 1 Hz 的输出参考噪声从 20.01 $\mu$ V/ $\surd$ Hz 降低到 394 nV/ $\surd$ Hz。在实验部分,我们制作了含有 RuO2 传感薄膜的葡萄糖生物传感器,并通过扫描电子显微镜(SEM)和原子力显微镜(AFM)分析了传感器工作电极的表面形貌。实验结果表明,该生物传感器在 3 mM 至 7 mM 的葡萄糖浓度范围内表现出良好的线性度(0.998)和灵敏度(82.83 mV/mM)。此外,还通过 Hspice 仿真和实际测试验证了 Chopper 放大器的调制和解调能力,并证实它能有效降低噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Implementation of a High-Performance Glucose Biosensor Based on Differential EGFET and Chopper Amplifier
In this paper, a new architecture for glucose biosensors is proposed, which adopts a Chopper amplifier instead of a conventional instrumentation amplifier (INA) and differential extended gate field effect transistor (EGFET) as the input stage. The architecture effectively suppresses low-frequency noises such as flicker noise and significantly improves signal quality while reducing power consumption and layout area. The simulation results indicate that when the chopper frequency is set to 5 kHz, the chopper amplifier effectively reduces the output-referred noise at 1 Hz from 20.01 $\mu$ V/ $\surd$ Hz to 394 nV/ $\surd$ Hz. In the experimental part, we fabricated a glucose biosensor containing a RuO2 sensing film, and analyzed the surface morphology of the sensor’s working electrode by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The experimental results showed that the biosensor exhibited good linearity (0.998) and sensitivity (82.83 mV/mM) over the glucose concentration range of 3 mM to 7 mM. In addition, the modulation and demodulation capabilities of the Chopper amplifier were verified through Hspice simulations and real-world tests, and it was confirmed to be effective in reducing noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信