{"title":"康乃馨(Dianthus caryophyllus L.)中褪黑激素生物合成途径基因的全基因组特征及其对外源褪黑激素响应的表达分析","authors":"Priti, Payal Kapoor, Surbhi Mali, Vipasha Verma, Megha Katoch, Gaurav Zinta, Bhavya Bhargava","doi":"10.1016/j.scienta.2024.113776","DOIUrl":null,"url":null,"abstract":"Carnation (<ce:italic>Dianthus caryophyllus</ce:italic> L.) is a prominent floricultural crop valued for its diverse colors, offering significant economic and ornamental value globally. However, the global demand for its flowers makes flower yield an important attribute that relies on the quantity of lateral branches in the crop. Melatonin as a multi-regulatory phytohormone play vital functions in governing plant growth and development. It is synthesized from tryptophan via four key enzymes. Tryptophan decarboxylase (TDC), Tryptamine 5-hydroxylase (T5H), Serotonin <ce:italic>N</ce:italic>-acetyltransferase (SNAT), and <ce:italic>N</ce:italic>-Acetylserotonin <ce:italic>O-</ce:italic>methyltransferase (ASMT). Although the significance of melatonin is recognized, its impact on the growth and development of carnation remains understudied. In the current study, we investigated the effect of exogenous melatonin at different concentrations, on growth pattern of carnation, followed by genome-wide characterization, <ce:italic>in-silico</ce:italic> analysis and expression profiling of melatonin biosynthetic pathway genes. Results showed increased branching and reduced height with increased melatonin concentrations up to a point. <ce:italic>In-silico</ce:italic> analysis identified ten genes in the melatonin biosynthetic pathway, including two <ce:italic>TDC</ce:italic>, two <ce:italic>T5H,</ce:italic> one <ce:italic>SNAT</ce:italic>, and five <ce:italic>ASMT</ce:italic> members. Domain analysis confirmed the presence of characteristic domains such as pyridoxal-dependent decarboxylase, cytochrome P450, Acetyltransferase_1, and O-methyltransferase. Physiochemical properties, gene structure, conserved motifs, promoter regions, gene ontology, synteny, and evolutionary relationships through phylogeny were also analysed. Sub-cellular localization predictions showed distribution of melatonin biosynthetic enzymes across various cellular compartments. Expression analysis of these genes under different exogenous melatonin concentrations (100, 200, 300, 400, 500, and 1000 µM) revealed significant upregulation at 100 µM and 500 µM, while no change was observed at 1000 µM. These findings suggest that optimal exogenous melatonin concentrations enhance the expression of biosynthetic pathway genes ultimately led to increased branching in carnation due to increased endogenous melatonin levels. This study establishes a basis for future functional characterization of melatonin biosynthetic pathway genes to elucidate their roles in carnation growth and development.","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide characterization of melatonin biosynthetic pathway genes in carnation (Dianthus caryophyllus L.) and their expression analysis in response to exogenous melatonin\",\"authors\":\"Priti, Payal Kapoor, Surbhi Mali, Vipasha Verma, Megha Katoch, Gaurav Zinta, Bhavya Bhargava\",\"doi\":\"10.1016/j.scienta.2024.113776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carnation (<ce:italic>Dianthus caryophyllus</ce:italic> L.) is a prominent floricultural crop valued for its diverse colors, offering significant economic and ornamental value globally. However, the global demand for its flowers makes flower yield an important attribute that relies on the quantity of lateral branches in the crop. Melatonin as a multi-regulatory phytohormone play vital functions in governing plant growth and development. It is synthesized from tryptophan via four key enzymes. Tryptophan decarboxylase (TDC), Tryptamine 5-hydroxylase (T5H), Serotonin <ce:italic>N</ce:italic>-acetyltransferase (SNAT), and <ce:italic>N</ce:italic>-Acetylserotonin <ce:italic>O-</ce:italic>methyltransferase (ASMT). Although the significance of melatonin is recognized, its impact on the growth and development of carnation remains understudied. In the current study, we investigated the effect of exogenous melatonin at different concentrations, on growth pattern of carnation, followed by genome-wide characterization, <ce:italic>in-silico</ce:italic> analysis and expression profiling of melatonin biosynthetic pathway genes. Results showed increased branching and reduced height with increased melatonin concentrations up to a point. <ce:italic>In-silico</ce:italic> analysis identified ten genes in the melatonin biosynthetic pathway, including two <ce:italic>TDC</ce:italic>, two <ce:italic>T5H,</ce:italic> one <ce:italic>SNAT</ce:italic>, and five <ce:italic>ASMT</ce:italic> members. Domain analysis confirmed the presence of characteristic domains such as pyridoxal-dependent decarboxylase, cytochrome P450, Acetyltransferase_1, and O-methyltransferase. Physiochemical properties, gene structure, conserved motifs, promoter regions, gene ontology, synteny, and evolutionary relationships through phylogeny were also analysed. Sub-cellular localization predictions showed distribution of melatonin biosynthetic enzymes across various cellular compartments. Expression analysis of these genes under different exogenous melatonin concentrations (100, 200, 300, 400, 500, and 1000 µM) revealed significant upregulation at 100 µM and 500 µM, while no change was observed at 1000 µM. These findings suggest that optimal exogenous melatonin concentrations enhance the expression of biosynthetic pathway genes ultimately led to increased branching in carnation due to increased endogenous melatonin levels. This study establishes a basis for future functional characterization of melatonin biosynthetic pathway genes to elucidate their roles in carnation growth and development.\",\"PeriodicalId\":21679,\"journal\":{\"name\":\"Scientia Horticulturae\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scienta.2024.113776\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.scienta.2024.113776","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Genome-wide characterization of melatonin biosynthetic pathway genes in carnation (Dianthus caryophyllus L.) and their expression analysis in response to exogenous melatonin
Carnation (Dianthus caryophyllus L.) is a prominent floricultural crop valued for its diverse colors, offering significant economic and ornamental value globally. However, the global demand for its flowers makes flower yield an important attribute that relies on the quantity of lateral branches in the crop. Melatonin as a multi-regulatory phytohormone play vital functions in governing plant growth and development. It is synthesized from tryptophan via four key enzymes. Tryptophan decarboxylase (TDC), Tryptamine 5-hydroxylase (T5H), Serotonin N-acetyltransferase (SNAT), and N-Acetylserotonin O-methyltransferase (ASMT). Although the significance of melatonin is recognized, its impact on the growth and development of carnation remains understudied. In the current study, we investigated the effect of exogenous melatonin at different concentrations, on growth pattern of carnation, followed by genome-wide characterization, in-silico analysis and expression profiling of melatonin biosynthetic pathway genes. Results showed increased branching and reduced height with increased melatonin concentrations up to a point. In-silico analysis identified ten genes in the melatonin biosynthetic pathway, including two TDC, two T5H, one SNAT, and five ASMT members. Domain analysis confirmed the presence of characteristic domains such as pyridoxal-dependent decarboxylase, cytochrome P450, Acetyltransferase_1, and O-methyltransferase. Physiochemical properties, gene structure, conserved motifs, promoter regions, gene ontology, synteny, and evolutionary relationships through phylogeny were also analysed. Sub-cellular localization predictions showed distribution of melatonin biosynthetic enzymes across various cellular compartments. Expression analysis of these genes under different exogenous melatonin concentrations (100, 200, 300, 400, 500, and 1000 µM) revealed significant upregulation at 100 µM and 500 µM, while no change was observed at 1000 µM. These findings suggest that optimal exogenous melatonin concentrations enhance the expression of biosynthetic pathway genes ultimately led to increased branching in carnation due to increased endogenous melatonin levels. This study establishes a basis for future functional characterization of melatonin biosynthetic pathway genes to elucidate their roles in carnation growth and development.
期刊介绍:
Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.