{"title":"AmiRNA 技术通过抑制 TYLCV 复制来抑制植物与病原体的相互作用途径,从而增强番茄的抗病性","authors":"Xian Wang, Baoqiang Wang, Baoxia Jin, Weijie Wang, Xiaolin Zhu, Wenyu Liu, Ling Yang, Xiaohong Wei","doi":"10.1021/acs.jafc.4c07332","DOIUrl":null,"url":null,"abstract":"Tomato yellow leaf curl virus disease has seriously threatened the quality and yield of tomatoes. In this study, we investigated the role of amiRNA technology in disease resistance in tomatoes (cherry tomato and large-fruited tomato) and analyzed the physiological and molecular mechanisms of disease resistance in transgenic plants. TYLCV contains six functional genes, of which the <i>C</i>1, <i>C2</i>, and <i>V1</i> genes have more phosphorylation sites and glycosylation sites, and the protein structure is more complex. The virus replication was inhibited, the peroxidation of membrane lipids was reduced, and disease resistance was enhanced in all transgenic cherry tomato (J6) plants in which the <i>C1</i>, <i>C2</i>, and <i>V1</i> genes were silenced, respectively. Similarly, silencing of the <i>C1</i> gene enhanced disease resistance in large-fruited tomatoes. In conclusion, amiRNA technology hinders viral replication, leading to reduced activity of the tomato plant-pathogen interaction pathway and weakening tomato-virus interactions, thereby improving disease resistance.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"70 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AmiRNA Technology Enhances Tomato Disease Resistance by Suppressing Plant-Pathogen Interaction Pathways through Inhibiting TYLCV Replication\",\"authors\":\"Xian Wang, Baoqiang Wang, Baoxia Jin, Weijie Wang, Xiaolin Zhu, Wenyu Liu, Ling Yang, Xiaohong Wei\",\"doi\":\"10.1021/acs.jafc.4c07332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tomato yellow leaf curl virus disease has seriously threatened the quality and yield of tomatoes. In this study, we investigated the role of amiRNA technology in disease resistance in tomatoes (cherry tomato and large-fruited tomato) and analyzed the physiological and molecular mechanisms of disease resistance in transgenic plants. TYLCV contains six functional genes, of which the <i>C</i>1, <i>C2</i>, and <i>V1</i> genes have more phosphorylation sites and glycosylation sites, and the protein structure is more complex. The virus replication was inhibited, the peroxidation of membrane lipids was reduced, and disease resistance was enhanced in all transgenic cherry tomato (J6) plants in which the <i>C1</i>, <i>C2</i>, and <i>V1</i> genes were silenced, respectively. Similarly, silencing of the <i>C1</i> gene enhanced disease resistance in large-fruited tomatoes. In conclusion, amiRNA technology hinders viral replication, leading to reduced activity of the tomato plant-pathogen interaction pathway and weakening tomato-virus interactions, thereby improving disease resistance.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c07332\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c07332","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
AmiRNA Technology Enhances Tomato Disease Resistance by Suppressing Plant-Pathogen Interaction Pathways through Inhibiting TYLCV Replication
Tomato yellow leaf curl virus disease has seriously threatened the quality and yield of tomatoes. In this study, we investigated the role of amiRNA technology in disease resistance in tomatoes (cherry tomato and large-fruited tomato) and analyzed the physiological and molecular mechanisms of disease resistance in transgenic plants. TYLCV contains six functional genes, of which the C1, C2, and V1 genes have more phosphorylation sites and glycosylation sites, and the protein structure is more complex. The virus replication was inhibited, the peroxidation of membrane lipids was reduced, and disease resistance was enhanced in all transgenic cherry tomato (J6) plants in which the C1, C2, and V1 genes were silenced, respectively. Similarly, silencing of the C1 gene enhanced disease resistance in large-fruited tomatoes. In conclusion, amiRNA technology hinders viral replication, leading to reduced activity of the tomato plant-pathogen interaction pathway and weakening tomato-virus interactions, thereby improving disease resistance.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.