Carey E. Lyons, Jean Pierre Pallais, Seth McGonigle, Rachel P. Mansk, Charles W. Collinge, Matthew J. Yousefzadeh, Darren J. Baker, Patricia R. Schrank, Jesse W. Williams, Laura J. Niedernhofer, Jan M. van Deursen, Maria Razzoli, Alessandro Bartolomucci
{"title":"慢性社会压力会诱导小鼠体内 p16 介导的衰老细胞积累。","authors":"Carey E. Lyons, Jean Pierre Pallais, Seth McGonigle, Rachel P. Mansk, Charles W. Collinge, Matthew J. Yousefzadeh, Darren J. Baker, Patricia R. Schrank, Jesse W. Williams, Laura J. Niedernhofer, Jan M. van Deursen, Maria Razzoli, Alessandro Bartolomucci","doi":"10.1038/s43587-024-00743-8","DOIUrl":null,"url":null,"abstract":"Life stress can shorten lifespan and increase risk for aging-related diseases, but the biology underlying this phenomenon remains unclear. Here we assessed the effect of chronic stress on cellular senescence—a hallmark of aging. Exposure to restraint stress, a psychological non-social stress model, increased p21Cip1 exclusively in the brains of male, but not female mice, and in a p16Ink4a-independent manner. Conversely, exposure to chronic subordination stress (only males were tested) increased key senescent cell markers in peripheral blood mononuclear cells, adipose tissue and brain, in a p16Ink4a-dependent manner. p16Ink4a-positive cells in the brain of chronic subordination stress-exposed mice were primarily hippocampal and cortical neurons with evidence of DNA damage that could be reduced by p16Ink4a cell clearance. Clearance of p16Ink4a-positive cells was not sufficient to ameliorate the adverse effects of social stress on measured metrics of healthspan. Overall, our findings indicate that social stress induces an organ-specific and p16Ink4a-dependent accumulation of senescent cells, illuminating a fundamental way by which the social environment can contribute to aging. Exploring the molecular consequences of exposing mice to social stress, Lyons et al. identify that hippocampal and cortical neurons acquire features of senescence, identifying a mechanism through which the social environment may contribute to aging.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"5 1","pages":"48-64"},"PeriodicalIF":17.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chronic social stress induces p16-mediated senescent cell accumulation in mice\",\"authors\":\"Carey E. Lyons, Jean Pierre Pallais, Seth McGonigle, Rachel P. Mansk, Charles W. Collinge, Matthew J. Yousefzadeh, Darren J. Baker, Patricia R. Schrank, Jesse W. Williams, Laura J. Niedernhofer, Jan M. van Deursen, Maria Razzoli, Alessandro Bartolomucci\",\"doi\":\"10.1038/s43587-024-00743-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Life stress can shorten lifespan and increase risk for aging-related diseases, but the biology underlying this phenomenon remains unclear. Here we assessed the effect of chronic stress on cellular senescence—a hallmark of aging. Exposure to restraint stress, a psychological non-social stress model, increased p21Cip1 exclusively in the brains of male, but not female mice, and in a p16Ink4a-independent manner. Conversely, exposure to chronic subordination stress (only males were tested) increased key senescent cell markers in peripheral blood mononuclear cells, adipose tissue and brain, in a p16Ink4a-dependent manner. p16Ink4a-positive cells in the brain of chronic subordination stress-exposed mice were primarily hippocampal and cortical neurons with evidence of DNA damage that could be reduced by p16Ink4a cell clearance. Clearance of p16Ink4a-positive cells was not sufficient to ameliorate the adverse effects of social stress on measured metrics of healthspan. Overall, our findings indicate that social stress induces an organ-specific and p16Ink4a-dependent accumulation of senescent cells, illuminating a fundamental way by which the social environment can contribute to aging. Exploring the molecular consequences of exposing mice to social stress, Lyons et al. identify that hippocampal and cortical neurons acquire features of senescence, identifying a mechanism through which the social environment may contribute to aging.\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\"5 1\",\"pages\":\"48-64\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43587-024-00743-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-024-00743-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Chronic social stress induces p16-mediated senescent cell accumulation in mice
Life stress can shorten lifespan and increase risk for aging-related diseases, but the biology underlying this phenomenon remains unclear. Here we assessed the effect of chronic stress on cellular senescence—a hallmark of aging. Exposure to restraint stress, a psychological non-social stress model, increased p21Cip1 exclusively in the brains of male, but not female mice, and in a p16Ink4a-independent manner. Conversely, exposure to chronic subordination stress (only males were tested) increased key senescent cell markers in peripheral blood mononuclear cells, adipose tissue and brain, in a p16Ink4a-dependent manner. p16Ink4a-positive cells in the brain of chronic subordination stress-exposed mice were primarily hippocampal and cortical neurons with evidence of DNA damage that could be reduced by p16Ink4a cell clearance. Clearance of p16Ink4a-positive cells was not sufficient to ameliorate the adverse effects of social stress on measured metrics of healthspan. Overall, our findings indicate that social stress induces an organ-specific and p16Ink4a-dependent accumulation of senescent cells, illuminating a fundamental way by which the social environment can contribute to aging. Exploring the molecular consequences of exposing mice to social stress, Lyons et al. identify that hippocampal and cortical neurons acquire features of senescence, identifying a mechanism through which the social environment may contribute to aging.