老化大脑中的铁稳态和神经退行性变:洞察铁氧化途径。

IF 12.5 1区 医学 Q1 CELL BIOLOGY
Mohammed Alrouji , Saleha Anwar , Kumar Venkatesan , Moyad Shahwan , Md Imtaiyaz Hassan , Asimul Islam , Anas Shamsi
{"title":"老化大脑中的铁稳态和神经退行性变:洞察铁氧化途径。","authors":"Mohammed Alrouji ,&nbsp;Saleha Anwar ,&nbsp;Kumar Venkatesan ,&nbsp;Moyad Shahwan ,&nbsp;Md Imtaiyaz Hassan ,&nbsp;Asimul Islam ,&nbsp;Anas Shamsi","doi":"10.1016/j.arr.2024.102575","DOIUrl":null,"url":null,"abstract":"<div><div>Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"102 ","pages":"Article 102575"},"PeriodicalIF":12.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways\",\"authors\":\"Mohammed Alrouji ,&nbsp;Saleha Anwar ,&nbsp;Kumar Venkatesan ,&nbsp;Moyad Shahwan ,&nbsp;Md Imtaiyaz Hassan ,&nbsp;Asimul Islam ,&nbsp;Anas Shamsi\",\"doi\":\"10.1016/j.arr.2024.102575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.</div></div>\",\"PeriodicalId\":55545,\"journal\":{\"name\":\"Ageing Research Reviews\",\"volume\":\"102 \",\"pages\":\"Article 102575\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568163724003933\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163724003933","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

老龄化是各种慢性疾病的主要风险因素,也是开发新型、广泛有效的预防或治疗老龄相关疾病(包括影响大脑的疾病)的潜在目标。导致衰老的机制被概括为衰老的标志,而铁失衡是主要因素之一。铁中毒是一种由铁介导的脂质过氧化诱导的程序性细胞死亡,最近被认为与阿尔茨海默病(AD)、帕金森病(PD)和亨廷顿病(HD)等神经退行性疾病有关。尽管具体机制尚不清楚,但解决铁蛋白沉积问题为治疗神经退行性疾病提供了机遇和挑战。这项研究探讨了铁蛋白沉积如何导致大脑老化背后的关键过程,重点是其中涉及的复杂信号网络。这篇文章旨在揭示铁蛋白沉积这种特定类型的细胞死亡是如何驱动大脑中与年龄相关的变化的。此外,文章还揭示了它在神经退行性疾病中的作用,讨论了了解这些机制如何能开辟新的治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways
Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ageing Research Reviews
Ageing Research Reviews 医学-老年医学
CiteScore
19.80
自引率
2.30%
发文量
216
审稿时长
55 days
期刊介绍: With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends. ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research. The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信