Aníbal Sánchez de la Torre , Sara Ezquerro-Herce , Alba Huerga-Gómez , Ester Sánchez-Martín , Juan Carlos Chara , Carlos Matute , Krisztina Monory , Susana Mato , Beat Lutz , Manuel Guzmán , Tania Aguado , Javier Palazuelos
{"title":"NG2 细胞中的 CB1 受体可介导由 CANNABINOID 引起的功能性髓鞘再生。","authors":"Aníbal Sánchez de la Torre , Sara Ezquerro-Herce , Alba Huerga-Gómez , Ester Sánchez-Martín , Juan Carlos Chara , Carlos Matute , Krisztina Monory , Susana Mato , Beat Lutz , Manuel Guzmán , Tania Aguado , Javier Palazuelos","doi":"10.1016/j.pneurobio.2024.102683","DOIUrl":null,"url":null,"abstract":"<div><div>Defects in myelin homeostasis have been reported in many neuropathological conditions. Cannabinoid compounds have been shown to efficiently promote myelin regeneration in animal models of demyelination. However, it is still unknown whether this action relies mostly on a cell autonomous effect on oligodendroglial-lineage-NG2 cells. By using conditional genetic mouse models, here we found that cannabinoid CB<sub>1</sub> receptors located on NG2 cells are required for oligodendroglial differentiation and myelin regeneration after demyelination. Selective CB<sub>1</sub> receptor gene depletion in NG2 cells following toxin-induced demyelination disrupted oligodendrocyte regeneration and functional remyelination and exacerbated axonal damage. These deficits were rescued by pharmacological blockade of the RhoA/ROCK/Cofilin pathway. Conversely, tetrahydrocannabinol administration promoted oligodendrocyte regeneration and functional remyelination in wild-type but not <em>Ng2</em>-CB<sub>1</sub>-deficient mice. Overall, this study identifies CB<sub>1</sub> receptors as essential modulators of remyelination and support the therapeutic potential of cannabinoids for promoting remyelination in neurological disorders.</div></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"243 ","pages":"Article 102683"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CB1 receptors in NG2 cells mediate cannabinoid-evoked functional myelin regeneration\",\"authors\":\"Aníbal Sánchez de la Torre , Sara Ezquerro-Herce , Alba Huerga-Gómez , Ester Sánchez-Martín , Juan Carlos Chara , Carlos Matute , Krisztina Monory , Susana Mato , Beat Lutz , Manuel Guzmán , Tania Aguado , Javier Palazuelos\",\"doi\":\"10.1016/j.pneurobio.2024.102683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Defects in myelin homeostasis have been reported in many neuropathological conditions. Cannabinoid compounds have been shown to efficiently promote myelin regeneration in animal models of demyelination. However, it is still unknown whether this action relies mostly on a cell autonomous effect on oligodendroglial-lineage-NG2 cells. By using conditional genetic mouse models, here we found that cannabinoid CB<sub>1</sub> receptors located on NG2 cells are required for oligodendroglial differentiation and myelin regeneration after demyelination. Selective CB<sub>1</sub> receptor gene depletion in NG2 cells following toxin-induced demyelination disrupted oligodendrocyte regeneration and functional remyelination and exacerbated axonal damage. These deficits were rescued by pharmacological blockade of the RhoA/ROCK/Cofilin pathway. Conversely, tetrahydrocannabinol administration promoted oligodendrocyte regeneration and functional remyelination in wild-type but not <em>Ng2</em>-CB<sub>1</sub>-deficient mice. Overall, this study identifies CB<sub>1</sub> receptors as essential modulators of remyelination and support the therapeutic potential of cannabinoids for promoting remyelination in neurological disorders.</div></div>\",\"PeriodicalId\":20851,\"journal\":{\"name\":\"Progress in Neurobiology\",\"volume\":\"243 \",\"pages\":\"Article 102683\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301008224001199\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008224001199","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
CB1 receptors in NG2 cells mediate cannabinoid-evoked functional myelin regeneration
Defects in myelin homeostasis have been reported in many neuropathological conditions. Cannabinoid compounds have been shown to efficiently promote myelin regeneration in animal models of demyelination. However, it is still unknown whether this action relies mostly on a cell autonomous effect on oligodendroglial-lineage-NG2 cells. By using conditional genetic mouse models, here we found that cannabinoid CB1 receptors located on NG2 cells are required for oligodendroglial differentiation and myelin regeneration after demyelination. Selective CB1 receptor gene depletion in NG2 cells following toxin-induced demyelination disrupted oligodendrocyte regeneration and functional remyelination and exacerbated axonal damage. These deficits were rescued by pharmacological blockade of the RhoA/ROCK/Cofilin pathway. Conversely, tetrahydrocannabinol administration promoted oligodendrocyte regeneration and functional remyelination in wild-type but not Ng2-CB1-deficient mice. Overall, this study identifies CB1 receptors as essential modulators of remyelination and support the therapeutic potential of cannabinoids for promoting remyelination in neurological disorders.
期刊介绍:
Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.