{"title":"滑动和加压条件下弹性表面微孔中液体厚度分布的特征。","authors":"Yoshiyasu Ichikawa, Rikuto Shinozuka, Shinya Sugisawa, Tatsuhiko Hatano, Yoshio Kaji, Isao Kuwayama, Masahiro Motosuke","doi":"10.1063/5.0226400","DOIUrl":null,"url":null,"abstract":"<p><p>To improve the performance of studless tires on ice surfaces, the mechanism of liquid film removal must be elucidated. In this study, an experimental system is developed to simulate the running conditions of a studless tire, and the microscopic liquid film flow generated between the rubber surface and glass is observed to evaluate the liquid thickness distribution. Liquid film removal by micropores on foamed rubber samples is investigated by visualizing the liquid thickness in the micropores. The proposed system enables variations in the pressure and sliding velocity between the rubber and glass. The liquid thickness in the micropores is measured using laser-induced fluorescence, and the effects of pressure and sliding velocity on the thickness are examined. Water penetrates the micropores on the rubber sample surface, and different liquid thicknesses are obtained for each pore. The amount of liquid penetrating the pores is affected to a greater extent by the sliding velocity than by the pressure. Therefore, liquid penetration is more strongly influenced by the hydrodynamic effect of the increasing inertia of the liquid under high sliding velocities than by the elastic deformation of the pore.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of liquid-thickness distribution in micropores on elastic surface under sliding and pressurizing conditions.\",\"authors\":\"Yoshiyasu Ichikawa, Rikuto Shinozuka, Shinya Sugisawa, Tatsuhiko Hatano, Yoshio Kaji, Isao Kuwayama, Masahiro Motosuke\",\"doi\":\"10.1063/5.0226400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To improve the performance of studless tires on ice surfaces, the mechanism of liquid film removal must be elucidated. In this study, an experimental system is developed to simulate the running conditions of a studless tire, and the microscopic liquid film flow generated between the rubber surface and glass is observed to evaluate the liquid thickness distribution. Liquid film removal by micropores on foamed rubber samples is investigated by visualizing the liquid thickness in the micropores. The proposed system enables variations in the pressure and sliding velocity between the rubber and glass. The liquid thickness in the micropores is measured using laser-induced fluorescence, and the effects of pressure and sliding velocity on the thickness are examined. Water penetrates the micropores on the rubber sample surface, and different liquid thicknesses are obtained for each pore. The amount of liquid penetrating the pores is affected to a greater extent by the sliding velocity than by the pressure. Therefore, liquid penetration is more strongly influenced by the hydrodynamic effect of the increasing inertia of the liquid under high sliding velocities than by the elastic deformation of the pore.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226400\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226400","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Characterization of liquid-thickness distribution in micropores on elastic surface under sliding and pressurizing conditions.
To improve the performance of studless tires on ice surfaces, the mechanism of liquid film removal must be elucidated. In this study, an experimental system is developed to simulate the running conditions of a studless tire, and the microscopic liquid film flow generated between the rubber surface and glass is observed to evaluate the liquid thickness distribution. Liquid film removal by micropores on foamed rubber samples is investigated by visualizing the liquid thickness in the micropores. The proposed system enables variations in the pressure and sliding velocity between the rubber and glass. The liquid thickness in the micropores is measured using laser-induced fluorescence, and the effects of pressure and sliding velocity on the thickness are examined. Water penetrates the micropores on the rubber sample surface, and different liquid thicknesses are obtained for each pore. The amount of liquid penetrating the pores is affected to a greater extent by the sliding velocity than by the pressure. Therefore, liquid penetration is more strongly influenced by the hydrodynamic effect of the increasing inertia of the liquid under high sliding velocities than by the elastic deformation of the pore.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.