Shuai Yu, Shengtao Ma, Qiuling Wang, Zhifei Chen, Gaolei Xi, Nan An, Hanning Yao, Tao Jia, Xiuhua Zhao, Lei Yang
{"title":"通过液氮速冻辅助无溶剂微波萃取工艺提取松针精油用于抗菌。","authors":"Shuai Yu, Shengtao Ma, Qiuling Wang, Zhifei Chen, Gaolei Xi, Nan An, Hanning Yao, Tao Jia, Xiuhua Zhao, Lei Yang","doi":"10.1002/pca.3470","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study investigates the composition and antibacterial properties of essential oil extracted from Pinus koraiensis (Siebold & Zucc) pine needles using a liquid nitrogen freezing treatment combined with solvent-free microwave extraction (LNSFM).</p><p><strong>Objective: </strong>The aim is to develop a low-energy, high-efficiency extraction method for conifer essential oils, analyze their chemical composition, and evaluate their antibacterial efficacy.</p><p><strong>Methodology: </strong>Pine needle samples were frozen with liquid nitrogen and subsequently crushed. The essential oil was extracted using solvent-free microwave technology. A single-factor test and response surface methodology were employed to optimize extraction parameters. The extraction efficiency of LNSFM was compared with traditional methods through kinetics, and the essential oil components were analyzed using gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the extracted volatile oil was tested against Escherichia coli and Staphylococcus aureus.</p><p><strong>Conclusion: </strong>LNSFM proves to be a green and efficient extraction method suitable for obtaining volatile oils from pine needles, which demonstrate significant antibacterial properties.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pine Needle of Pinus koraiensis (Siebold & Zucc) Essential Oil Through Liquid Nitrogen Quick-Freezing Assisted Solvent-Free Microwave Extraction Process for Antibacterial Application.\",\"authors\":\"Shuai Yu, Shengtao Ma, Qiuling Wang, Zhifei Chen, Gaolei Xi, Nan An, Hanning Yao, Tao Jia, Xiuhua Zhao, Lei Yang\",\"doi\":\"10.1002/pca.3470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>This study investigates the composition and antibacterial properties of essential oil extracted from Pinus koraiensis (Siebold & Zucc) pine needles using a liquid nitrogen freezing treatment combined with solvent-free microwave extraction (LNSFM).</p><p><strong>Objective: </strong>The aim is to develop a low-energy, high-efficiency extraction method for conifer essential oils, analyze their chemical composition, and evaluate their antibacterial efficacy.</p><p><strong>Methodology: </strong>Pine needle samples were frozen with liquid nitrogen and subsequently crushed. The essential oil was extracted using solvent-free microwave technology. A single-factor test and response surface methodology were employed to optimize extraction parameters. The extraction efficiency of LNSFM was compared with traditional methods through kinetics, and the essential oil components were analyzed using gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the extracted volatile oil was tested against Escherichia coli and Staphylococcus aureus.</p><p><strong>Conclusion: </strong>LNSFM proves to be a green and efficient extraction method suitable for obtaining volatile oils from pine needles, which demonstrate significant antibacterial properties.</p>\",\"PeriodicalId\":20095,\"journal\":{\"name\":\"Phytochemical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemical Analysis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pca.3470\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3470","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Pine Needle of Pinus koraiensis (Siebold & Zucc) Essential Oil Through Liquid Nitrogen Quick-Freezing Assisted Solvent-Free Microwave Extraction Process for Antibacterial Application.
Introduction: This study investigates the composition and antibacterial properties of essential oil extracted from Pinus koraiensis (Siebold & Zucc) pine needles using a liquid nitrogen freezing treatment combined with solvent-free microwave extraction (LNSFM).
Objective: The aim is to develop a low-energy, high-efficiency extraction method for conifer essential oils, analyze their chemical composition, and evaluate their antibacterial efficacy.
Methodology: Pine needle samples were frozen with liquid nitrogen and subsequently crushed. The essential oil was extracted using solvent-free microwave technology. A single-factor test and response surface methodology were employed to optimize extraction parameters. The extraction efficiency of LNSFM was compared with traditional methods through kinetics, and the essential oil components were analyzed using gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the extracted volatile oil was tested against Escherichia coli and Staphylococcus aureus.
Conclusion: LNSFM proves to be a green and efficient extraction method suitable for obtaining volatile oils from pine needles, which demonstrate significant antibacterial properties.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.