Yuxin Zhou , Yuxiang Lu , Hengyong Xu , Xuyang Ji , Qingqing Deng , Xi Wang , Yao Zhang , Qiuhang Li , Yusheng Lu , Alma Rustempasic , Yiping Liu , Yan Wang
{"title":"miR-205a 与 RUNX2 对噻喃诱导的胫骨软骨发育不良中鸡软骨细胞增殖和分化的影响","authors":"Yuxin Zhou , Yuxiang Lu , Hengyong Xu , Xuyang Ji , Qingqing Deng , Xi Wang , Yao Zhang , Qiuhang Li , Yusheng Lu , Alma Rustempasic , Yiping Liu , Yan Wang","doi":"10.1016/j.psj.2024.104535","DOIUrl":null,"url":null,"abstract":"<div><div>Tibial dyschondroplasia (<strong>TD</strong>) is a kind of metabolic bone disease in fast-growing broilers, which seriously restricts the development of poultry industry. Our previous studies have revealed a significant upregulation of miR-205a in TD cartilage tissue, suggesting its potential role as a regulatory factor in the pathogenesis of TD. However, the precise function implications and underlying regulatory mechanism remain elusive. Therefore, this study aims to elucidate the biological functions and regulatory mechanisms of miR-205a in the progression of TD by employing mehtodologies such as qRT-PCR, CCK-8 assay, EdU assays, and flow cytometry. The findings demonstrated that the transfection of miR-205a overexpression plasmid reduced chondrocytes growth and development in TD while enhancing apoptosis; conversely, blocking miR-205a had opposite effects. <em>RUNX2</em> was identified as a target gene of miR-205a through biosynthesis and dual luciferase assays, and its overexpression helps chondrocytes in TD grow and develop. However, when both miR-205a and <em>RUNX2</em> were overexpressed, the regulatory effect of <em>RUNX2</em> was significantly suppressed. In conclusion, miR-205a plays a role in slowing the growth and development of chondrocytes in TD by targeting and reducing <em>RUNX2</em> expression, which helps to initiate and progress TD.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"Article 104535"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of miR-205a with RUNX2 towards proliferation and differentiation of chicken chondrocytes in thiram-induced tibial dyschondroplasia\",\"authors\":\"Yuxin Zhou , Yuxiang Lu , Hengyong Xu , Xuyang Ji , Qingqing Deng , Xi Wang , Yao Zhang , Qiuhang Li , Yusheng Lu , Alma Rustempasic , Yiping Liu , Yan Wang\",\"doi\":\"10.1016/j.psj.2024.104535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tibial dyschondroplasia (<strong>TD</strong>) is a kind of metabolic bone disease in fast-growing broilers, which seriously restricts the development of poultry industry. Our previous studies have revealed a significant upregulation of miR-205a in TD cartilage tissue, suggesting its potential role as a regulatory factor in the pathogenesis of TD. However, the precise function implications and underlying regulatory mechanism remain elusive. Therefore, this study aims to elucidate the biological functions and regulatory mechanisms of miR-205a in the progression of TD by employing mehtodologies such as qRT-PCR, CCK-8 assay, EdU assays, and flow cytometry. The findings demonstrated that the transfection of miR-205a overexpression plasmid reduced chondrocytes growth and development in TD while enhancing apoptosis; conversely, blocking miR-205a had opposite effects. <em>RUNX2</em> was identified as a target gene of miR-205a through biosynthesis and dual luciferase assays, and its overexpression helps chondrocytes in TD grow and develop. However, when both miR-205a and <em>RUNX2</em> were overexpressed, the regulatory effect of <em>RUNX2</em> was significantly suppressed. In conclusion, miR-205a plays a role in slowing the growth and development of chondrocytes in TD by targeting and reducing <em>RUNX2</em> expression, which helps to initiate and progress TD.</div></div>\",\"PeriodicalId\":20459,\"journal\":{\"name\":\"Poultry Science\",\"volume\":\"103 12\",\"pages\":\"Article 104535\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Poultry Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032579124011131\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579124011131","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
The effect of miR-205a with RUNX2 towards proliferation and differentiation of chicken chondrocytes in thiram-induced tibial dyschondroplasia
Tibial dyschondroplasia (TD) is a kind of metabolic bone disease in fast-growing broilers, which seriously restricts the development of poultry industry. Our previous studies have revealed a significant upregulation of miR-205a in TD cartilage tissue, suggesting its potential role as a regulatory factor in the pathogenesis of TD. However, the precise function implications and underlying regulatory mechanism remain elusive. Therefore, this study aims to elucidate the biological functions and regulatory mechanisms of miR-205a in the progression of TD by employing mehtodologies such as qRT-PCR, CCK-8 assay, EdU assays, and flow cytometry. The findings demonstrated that the transfection of miR-205a overexpression plasmid reduced chondrocytes growth and development in TD while enhancing apoptosis; conversely, blocking miR-205a had opposite effects. RUNX2 was identified as a target gene of miR-205a through biosynthesis and dual luciferase assays, and its overexpression helps chondrocytes in TD grow and develop. However, when both miR-205a and RUNX2 were overexpressed, the regulatory effect of RUNX2 was significantly suppressed. In conclusion, miR-205a plays a role in slowing the growth and development of chondrocytes in TD by targeting and reducing RUNX2 expression, which helps to initiate and progress TD.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.