{"title":"有氧运动可重塑肠道微生物群,减轻脑缺血再灌注损伤。","authors":"Mingjin Zhu, Jiajie Zhu, Jiafei Pan, Rui Fu, Guoyuan Pan, Jie Zhang","doi":"10.14670/HH-18-832","DOIUrl":null,"url":null,"abstract":"<p><p>Aerobic exercise exhibits a neuroprotective role against cerebral ischemia-reperfusion (I/R) injury, and the present study explored the underlying mechanisms. Adult Sprague-Dawley rats (n=87) were used in the study, and cerebral I/R injury in rats was modeled using middle cerebral artery occlusion and reperfusion (MCAOR), followed by interval aerobic exercise training at a moderate intensity. Colonization with gut microbiota from the trained rats was performed on MCAOR rats. Neurobehavioral assessments were performed. Cerebral infarction and neuronal damage were detected by tissue staining and molecular experiments. Gut microbiota composition was analyzed by 16S rRNA gene sequencing. Neuroinflammation was detected using an enzyme-linked immunosorbent assay. Aerobic exercise ameliorated neurological deficit, spontaneous locomotor activity, and spatial learning and memory impairment in MCAOR rats (<i>P</i><0.001). Further, aerobic exercise decreased infarct volume, attenuated neuronal damage, increased SYN1 and PSD95 expression, as well as reduced neuroinflammation by upregulating IL-10 and downregulating IL-6, TNF-α, IL-17, and TGF-β in MCAOR rats (<i>P</i><0.05). Aerobic exercise altered gut microbiota composition in MCAOR rats. Gut microbiota colonization in rats alleviated cerebral I/R injury by reducing neurological deficit scores, promoting spontaneous locomotor activity, decreasing infarct volume, elevating SYN1 and PSD95 expression, and improving neuroinflammation (<i>P</i><0.05). In conclusion, aerobic exercise remodeled the gut microbiota in rats to attenuate cognitive dysfunction and neuroinflammation after cerebral I/R.</p>","PeriodicalId":13164,"journal":{"name":"Histology and histopathology","volume":" ","pages":"18832"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerobic exercise remodels gut microbiota to alleviate cerebral ischemia-reperfusion injury.\",\"authors\":\"Mingjin Zhu, Jiajie Zhu, Jiafei Pan, Rui Fu, Guoyuan Pan, Jie Zhang\",\"doi\":\"10.14670/HH-18-832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aerobic exercise exhibits a neuroprotective role against cerebral ischemia-reperfusion (I/R) injury, and the present study explored the underlying mechanisms. Adult Sprague-Dawley rats (n=87) were used in the study, and cerebral I/R injury in rats was modeled using middle cerebral artery occlusion and reperfusion (MCAOR), followed by interval aerobic exercise training at a moderate intensity. Colonization with gut microbiota from the trained rats was performed on MCAOR rats. Neurobehavioral assessments were performed. Cerebral infarction and neuronal damage were detected by tissue staining and molecular experiments. Gut microbiota composition was analyzed by 16S rRNA gene sequencing. Neuroinflammation was detected using an enzyme-linked immunosorbent assay. Aerobic exercise ameliorated neurological deficit, spontaneous locomotor activity, and spatial learning and memory impairment in MCAOR rats (<i>P</i><0.001). Further, aerobic exercise decreased infarct volume, attenuated neuronal damage, increased SYN1 and PSD95 expression, as well as reduced neuroinflammation by upregulating IL-10 and downregulating IL-6, TNF-α, IL-17, and TGF-β in MCAOR rats (<i>P</i><0.05). Aerobic exercise altered gut microbiota composition in MCAOR rats. Gut microbiota colonization in rats alleviated cerebral I/R injury by reducing neurological deficit scores, promoting spontaneous locomotor activity, decreasing infarct volume, elevating SYN1 and PSD95 expression, and improving neuroinflammation (<i>P</i><0.05). In conclusion, aerobic exercise remodeled the gut microbiota in rats to attenuate cognitive dysfunction and neuroinflammation after cerebral I/R.</p>\",\"PeriodicalId\":13164,\"journal\":{\"name\":\"Histology and histopathology\",\"volume\":\" \",\"pages\":\"18832\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Histology and histopathology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.14670/HH-18-832\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histology and histopathology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14670/HH-18-832","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Aerobic exercise remodels gut microbiota to alleviate cerebral ischemia-reperfusion injury.
Aerobic exercise exhibits a neuroprotective role against cerebral ischemia-reperfusion (I/R) injury, and the present study explored the underlying mechanisms. Adult Sprague-Dawley rats (n=87) were used in the study, and cerebral I/R injury in rats was modeled using middle cerebral artery occlusion and reperfusion (MCAOR), followed by interval aerobic exercise training at a moderate intensity. Colonization with gut microbiota from the trained rats was performed on MCAOR rats. Neurobehavioral assessments were performed. Cerebral infarction and neuronal damage were detected by tissue staining and molecular experiments. Gut microbiota composition was analyzed by 16S rRNA gene sequencing. Neuroinflammation was detected using an enzyme-linked immunosorbent assay. Aerobic exercise ameliorated neurological deficit, spontaneous locomotor activity, and spatial learning and memory impairment in MCAOR rats (P<0.001). Further, aerobic exercise decreased infarct volume, attenuated neuronal damage, increased SYN1 and PSD95 expression, as well as reduced neuroinflammation by upregulating IL-10 and downregulating IL-6, TNF-α, IL-17, and TGF-β in MCAOR rats (P<0.05). Aerobic exercise altered gut microbiota composition in MCAOR rats. Gut microbiota colonization in rats alleviated cerebral I/R injury by reducing neurological deficit scores, promoting spontaneous locomotor activity, decreasing infarct volume, elevating SYN1 and PSD95 expression, and improving neuroinflammation (P<0.05). In conclusion, aerobic exercise remodeled the gut microbiota in rats to attenuate cognitive dysfunction and neuroinflammation after cerebral I/R.
期刊介绍:
HISTOLOGY AND HISTOPATHOLOGY is a peer-reviewed international journal, the purpose of which is to publish original and review articles in all fields of the microscopical morphology, cell biology and tissue engineering; high quality is the overall consideration. Its format is the standard international size of 21 x 27.7 cm. One volume is published every year (more than 1,300 pages, approximately 90 original works and 40 reviews). Each volume consists of 12 numbers published monthly online. The printed version of the journal includes 4 books every year; each of them compiles 3 numbers previously published online.