{"title":"发现具有抗 SARS-CoV-2 和抗炎活性的双功能分子查尔酮衍生物","authors":"Xuwen Chen, Hongtao Li, Meiting Wang, Donghui Sun, Jiani Lu, Tong Zhu, Hongzhuan Chen, Lili Chen, Shunying Liu","doi":"10.1021/acs.jnatprod.4c00657","DOIUrl":null,"url":null,"abstract":"<p><p>Danshensu extracted with traditional Chinese medicine <i>Salvia miltiorrhiza</i> has a wide range of bioactivities. Danshensu containing a catechol moiety has a moderate inhibitory effect on SARS-CoV-2 3CL<sup>pro</sup> (IC<sub>50</sub> = 2.2 μM) by a reversible covalent interaction and exhibits good anti-inflammatory activity. To enhance the inhibitory activity, we introduced Michael receptors into the side chain of danshensu as a possible covalent warhead and blocked the covalent binding sites of catechol moiety to yield chalcone derivatives. The resulting chalcone derivatives, <b>A4</b> and <b>A7</b>, were found to inhibit SARS-CoV-2 3CL<sup>pro</sup> <i>in vitro</i> with IC<sub>50</sub> values of 83.2 and 261.3 nM, respectively. Furthermore, <b>A4</b> and <b>A7</b> inhibit viral replication in the SARS-CoV-2 replicon system with EC<sub>50</sub> values of 19.9 and 11.7 μM, respectively. Time-dependent inhibition experiment and mass spectrometry show that <b>A4</b> acted as a noncovalent mixed inhibitor, while <b>A7</b> likely binds covalently at Cys145. The interaction mechanism between SARS-CoV-2 3CL<sup>pro</sup> and <b>A4</b> or <b>A7</b> was characterized by molecular docking studies. Additionally, both <b>A4</b> and <b>A7</b> demonstrated potent anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. These promising results suggest that chalcone derivatives <b>A4</b> and <b>A7</b> can serve as bifunctional molecules with both antivirus and anti-inflammatory properties.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Chalcone Derivatives as Bifunctional Molecules with Anti-SARS-CoV-2 and Anti-inflammatory Activities.\",\"authors\":\"Xuwen Chen, Hongtao Li, Meiting Wang, Donghui Sun, Jiani Lu, Tong Zhu, Hongzhuan Chen, Lili Chen, Shunying Liu\",\"doi\":\"10.1021/acs.jnatprod.4c00657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Danshensu extracted with traditional Chinese medicine <i>Salvia miltiorrhiza</i> has a wide range of bioactivities. Danshensu containing a catechol moiety has a moderate inhibitory effect on SARS-CoV-2 3CL<sup>pro</sup> (IC<sub>50</sub> = 2.2 μM) by a reversible covalent interaction and exhibits good anti-inflammatory activity. To enhance the inhibitory activity, we introduced Michael receptors into the side chain of danshensu as a possible covalent warhead and blocked the covalent binding sites of catechol moiety to yield chalcone derivatives. The resulting chalcone derivatives, <b>A4</b> and <b>A7</b>, were found to inhibit SARS-CoV-2 3CL<sup>pro</sup> <i>in vitro</i> with IC<sub>50</sub> values of 83.2 and 261.3 nM, respectively. Furthermore, <b>A4</b> and <b>A7</b> inhibit viral replication in the SARS-CoV-2 replicon system with EC<sub>50</sub> values of 19.9 and 11.7 μM, respectively. Time-dependent inhibition experiment and mass spectrometry show that <b>A4</b> acted as a noncovalent mixed inhibitor, while <b>A7</b> likely binds covalently at Cys145. The interaction mechanism between SARS-CoV-2 3CL<sup>pro</sup> and <b>A4</b> or <b>A7</b> was characterized by molecular docking studies. Additionally, both <b>A4</b> and <b>A7</b> demonstrated potent anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. These promising results suggest that chalcone derivatives <b>A4</b> and <b>A7</b> can serve as bifunctional molecules with both antivirus and anti-inflammatory properties.</p>\",\"PeriodicalId\":47,\"journal\":{\"name\":\"Journal of Natural Products \",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Products \",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jnatprod.4c00657\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c00657","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Discovery of Chalcone Derivatives as Bifunctional Molecules with Anti-SARS-CoV-2 and Anti-inflammatory Activities.
Danshensu extracted with traditional Chinese medicine Salvia miltiorrhiza has a wide range of bioactivities. Danshensu containing a catechol moiety has a moderate inhibitory effect on SARS-CoV-2 3CLpro (IC50 = 2.2 μM) by a reversible covalent interaction and exhibits good anti-inflammatory activity. To enhance the inhibitory activity, we introduced Michael receptors into the side chain of danshensu as a possible covalent warhead and blocked the covalent binding sites of catechol moiety to yield chalcone derivatives. The resulting chalcone derivatives, A4 and A7, were found to inhibit SARS-CoV-2 3CLproin vitro with IC50 values of 83.2 and 261.3 nM, respectively. Furthermore, A4 and A7 inhibit viral replication in the SARS-CoV-2 replicon system with EC50 values of 19.9 and 11.7 μM, respectively. Time-dependent inhibition experiment and mass spectrometry show that A4 acted as a noncovalent mixed inhibitor, while A7 likely binds covalently at Cys145. The interaction mechanism between SARS-CoV-2 3CLpro and A4 or A7 was characterized by molecular docking studies. Additionally, both A4 and A7 demonstrated potent anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. These promising results suggest that chalcone derivatives A4 and A7 can serve as bifunctional molecules with both antivirus and anti-inflammatory properties.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.