{"title":"改良β-半乳糖苷酶在乳清粉强化奶中原位合成半乳寡糖及其对酸奶技术功能特性的影响","authors":"Miao Miao, Shusen Li, Shaoqing Yang, Qiaojuan Yan, Zhixuan Xiang, Zhengqiang Jiang","doi":"10.1021/acs.jafc.4c07162","DOIUrl":null,"url":null,"abstract":"<p><p><i>In situ</i> galacto-oligosaccharide (GOS) synthesis in milk using β-galactosidases is an effective method for developing prebiotic dairy products. However, the low lactose concentration in milk (∼4.6%, w/w) reduces the GOS yield. In this study, a modified β-galactosidase from <i>Bacillus circulans</i> (mBgaD-D) with enhanced transglycosylation activity at low lactose concentration was developed through directed evolution and saturation mutagenesis. The GOS yield by mBgaD-D increased from 22.8% (wild type) to 30.8% in 50 g/L lactose (phosphate buffer). P<sub>mgut</sub> was a strong sorbitol-inducible promoter from <i>Bacillus subtilis</i>. The expression of mBgaD-D in <i>B. subtilis</i>, coupled with the P<sub>mgut</sub> promoter, resulted in a 6.4-fold increase (compared to the P<sub>43</sub> promoter) in extracellular enzyme activity. Additionally, adding whey powder to boost the initial lactose concentration further improved the GOS yield, which reached 43% under the optimized conditions. Combining mBgaD-D and whey powder enhanced milk sweetness, producing no sugar-added, GOS-enriched yogurt (GOSY). The GOS content in GOSY was 4.1/100 g, providing an appropriate level of sweetness and yielding a yogurt that is elastic as well as firm. GOSY also increased the population of <i>Bifidobacterium</i> spp. during a 24 h <i>in vitro</i> fecal fermentation. Thus, fortifying yogurt with mBgaD-D and whey powder can enhance its technological properties and health benefits.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":"26431-26440"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In Situ</i> Galacto-Oligosaccharides Synthesis in Whey Powder Fortified Milk by a Modified β-Galactosidase and Its Effect on the Techno-Functional Characteristics of Yogurt.\",\"authors\":\"Miao Miao, Shusen Li, Shaoqing Yang, Qiaojuan Yan, Zhixuan Xiang, Zhengqiang Jiang\",\"doi\":\"10.1021/acs.jafc.4c07162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>In situ</i> galacto-oligosaccharide (GOS) synthesis in milk using β-galactosidases is an effective method for developing prebiotic dairy products. However, the low lactose concentration in milk (∼4.6%, w/w) reduces the GOS yield. In this study, a modified β-galactosidase from <i>Bacillus circulans</i> (mBgaD-D) with enhanced transglycosylation activity at low lactose concentration was developed through directed evolution and saturation mutagenesis. The GOS yield by mBgaD-D increased from 22.8% (wild type) to 30.8% in 50 g/L lactose (phosphate buffer). P<sub>mgut</sub> was a strong sorbitol-inducible promoter from <i>Bacillus subtilis</i>. The expression of mBgaD-D in <i>B. subtilis</i>, coupled with the P<sub>mgut</sub> promoter, resulted in a 6.4-fold increase (compared to the P<sub>43</sub> promoter) in extracellular enzyme activity. Additionally, adding whey powder to boost the initial lactose concentration further improved the GOS yield, which reached 43% under the optimized conditions. Combining mBgaD-D and whey powder enhanced milk sweetness, producing no sugar-added, GOS-enriched yogurt (GOSY). The GOS content in GOSY was 4.1/100 g, providing an appropriate level of sweetness and yielding a yogurt that is elastic as well as firm. GOSY also increased the population of <i>Bifidobacterium</i> spp. during a 24 h <i>in vitro</i> fecal fermentation. Thus, fortifying yogurt with mBgaD-D and whey powder can enhance its technological properties and health benefits.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\" \",\"pages\":\"26431-26440\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c07162\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c07162","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
In Situ Galacto-Oligosaccharides Synthesis in Whey Powder Fortified Milk by a Modified β-Galactosidase and Its Effect on the Techno-Functional Characteristics of Yogurt.
In situ galacto-oligosaccharide (GOS) synthesis in milk using β-galactosidases is an effective method for developing prebiotic dairy products. However, the low lactose concentration in milk (∼4.6%, w/w) reduces the GOS yield. In this study, a modified β-galactosidase from Bacillus circulans (mBgaD-D) with enhanced transglycosylation activity at low lactose concentration was developed through directed evolution and saturation mutagenesis. The GOS yield by mBgaD-D increased from 22.8% (wild type) to 30.8% in 50 g/L lactose (phosphate buffer). Pmgut was a strong sorbitol-inducible promoter from Bacillus subtilis. The expression of mBgaD-D in B. subtilis, coupled with the Pmgut promoter, resulted in a 6.4-fold increase (compared to the P43 promoter) in extracellular enzyme activity. Additionally, adding whey powder to boost the initial lactose concentration further improved the GOS yield, which reached 43% under the optimized conditions. Combining mBgaD-D and whey powder enhanced milk sweetness, producing no sugar-added, GOS-enriched yogurt (GOSY). The GOS content in GOSY was 4.1/100 g, providing an appropriate level of sweetness and yielding a yogurt that is elastic as well as firm. GOSY also increased the population of Bifidobacterium spp. during a 24 h in vitro fecal fermentation. Thus, fortifying yogurt with mBgaD-D and whey powder can enhance its technological properties and health benefits.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.