Zhihao Xu, Wenjie Shang, Seongmin Kim, Alexandria Bobbitt, Eungkyu Lee, Tengfei Luo
{"title":"设计平面多层光子结构的量子启发遗传算法","authors":"Zhihao Xu, Wenjie Shang, Seongmin Kim, Alexandria Bobbitt, Eungkyu Lee, Tengfei Luo","doi":"10.1038/s41524-024-01438-9","DOIUrl":null,"url":null,"abstract":"<p>Quantum algorithms are emerging tools in the design of functional materials due to their powerful solution space search capability. How to balance the high price of quantum computing resources and the growing computing needs has become an urgent problem to be solved. We propose a novel optimization strategy based on an active learning scheme that combines the Quantum-inspired Genetic Algorithm (QGA) with machine learning surrogate model regression. Using Random Forests as the surrogate model circumvents the time-consuming physical modeling or experiments, thereby improving the optimization efficiency. QGA, a genetic algorithm embedded with quantum mechanics, combines the advantages of quantum computing and genetic algorithms, enabling faster and more robust convergence to the optimum. Using the design of planar multilayer photonic structures for transparent radiative cooling as a testbed, we show superiority of our algorithm over the classical genetic algorithm (CGA). Additionally, we show the precision advantage of the Random Forest (RF) model as a flexible surrogate model, which relaxes the constraints on the type of surrogate model that can be used in other quantum computing optimization algorithms (e.g., quantum annealing needs Ising model as a surrogate).</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"162 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-inspired genetic algorithm for designing planar multilayer photonic structure\",\"authors\":\"Zhihao Xu, Wenjie Shang, Seongmin Kim, Alexandria Bobbitt, Eungkyu Lee, Tengfei Luo\",\"doi\":\"10.1038/s41524-024-01438-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum algorithms are emerging tools in the design of functional materials due to their powerful solution space search capability. How to balance the high price of quantum computing resources and the growing computing needs has become an urgent problem to be solved. We propose a novel optimization strategy based on an active learning scheme that combines the Quantum-inspired Genetic Algorithm (QGA) with machine learning surrogate model regression. Using Random Forests as the surrogate model circumvents the time-consuming physical modeling or experiments, thereby improving the optimization efficiency. QGA, a genetic algorithm embedded with quantum mechanics, combines the advantages of quantum computing and genetic algorithms, enabling faster and more robust convergence to the optimum. Using the design of planar multilayer photonic structures for transparent radiative cooling as a testbed, we show superiority of our algorithm over the classical genetic algorithm (CGA). Additionally, we show the precision advantage of the Random Forest (RF) model as a flexible surrogate model, which relaxes the constraints on the type of surrogate model that can be used in other quantum computing optimization algorithms (e.g., quantum annealing needs Ising model as a surrogate).</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"162 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01438-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01438-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Quantum-inspired genetic algorithm for designing planar multilayer photonic structure
Quantum algorithms are emerging tools in the design of functional materials due to their powerful solution space search capability. How to balance the high price of quantum computing resources and the growing computing needs has become an urgent problem to be solved. We propose a novel optimization strategy based on an active learning scheme that combines the Quantum-inspired Genetic Algorithm (QGA) with machine learning surrogate model regression. Using Random Forests as the surrogate model circumvents the time-consuming physical modeling or experiments, thereby improving the optimization efficiency. QGA, a genetic algorithm embedded with quantum mechanics, combines the advantages of quantum computing and genetic algorithms, enabling faster and more robust convergence to the optimum. Using the design of planar multilayer photonic structures for transparent radiative cooling as a testbed, we show superiority of our algorithm over the classical genetic algorithm (CGA). Additionally, we show the precision advantage of the Random Forest (RF) model as a flexible surrogate model, which relaxes the constraints on the type of surrogate model that can be used in other quantum computing optimization algorithms (e.g., quantum annealing needs Ising model as a surrogate).
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.